1,038 research outputs found
Fast-response Receiver-driven Layered Multicast
In this paper, a new layered multicast protocol, called Fast-response Receiver-driven Layered Multicast (FRLM), is proposed. The differences between our FRLM and the original RLM are only at the receivers. Our design allows the receivers to track the available network bandwidth faster; this enables the receivers to converge to their optimal number of subscribed layers quicker, and to respond to the network congestion prompter. An early trigger mechanism for shortening IGMP leave latency is also designed. We show that FRLM can avoid several potential problems with the original RLM, which have been overlooked previously. Last but not the least, FRLM is a practical scheme that can be readily implemented in today's best-effort Internet.published_or_final_versio
Maximizing multicast call acceptance rate in multi-channel multi-interface wireless mesh networks
In this paper, we consider the problem of constructing bandwidth-guaranteed multicast tree in multi-channel multi-interface wireless mesh networks. We focus on the scenario of dynamic multicast call arrival, where each call has a specific bandwidth requirement. A call is accepted if a multicast tree with sufficient bandwidth on each link can be constructed. Intuitively, if the carried load on both the most-heavily loaded channel and the most-heavily loaded node is minimized, the traffic load in the network will be balanced. If the network load is balanced, more room will be available for accommodating future calls. This would maximize the call acceptance rate in the network. With the above notion of load balancing in mind, an Integer Linear Programming (ILP) formulation is formulated for constructing bandwidth-guaranteed tree. We show that the above problem is NP-hard, and an efficient heuristic algorithm called Largest Coverage Shortest-Path First (LC-SPF) is devised. Simulation results show that LC-SPF yields comparable call acceptance rate as the ILP formulation, but with much shorter running time. © 2010 IEEE.published_or_final_versio
Fast-response receiver-driven layered multicast with multiple servers
Almost all the proposed layered multicast algorithms support a single server, i.e. a receiver can only subscribe to at most one server. A common restriction to single server approach Is that the maximum number of subscribed layers, as well as the maximum achievable throughput Is limited by the specific bottleneck link between a receiver and the server. In this paper, a new layered multicast protocol, called Fast-response Receiver-driven Layered Multicast with Multiple Servers (FRLM-MS) Is proposed. Our design allows a receiver to subscribe to more than one servers. A FRLM-MS receiver can benefit from multiple paths to the multiple servers, resulting In a higher achievable bandwidth. It In turn allows the receiver to have a higher layer subscription, and thus a better playback performance. © 2005 IEEE.published_or_final_versio
A joint routing and scheduling algorithm for efficient broadcast in wireless mesh networks
With the increasing popularity of wireless mesh networks (WMNs), broadcasting traffic (e.g. IP-TV) will contribute a large portion of network load. In this paper, we consider a multi-channel multi-interface WMN with real time broadcast call arrivals. Aiming at maximizing the call acceptance rate of the network, an efficient broadcast tree construction algorithm, called Schedule-based Greedy Expansion (S-Expand), is designed. Unlike the existing time fraction approach, which focuses on assigning time fractions to tree links to guarantee the existence of a feasible schedule, we follow the approach of joint routing and scheduling. The proposed S-Expand algorithm packs non-interfering transmissions to use the same time slots; this would allow more flexibility in accepting future calls. Simulation results show that S-Expand achieves higher call acceptance rate than the traditional time fraction approach. ©2010 IEEE.published_or_final_versionThe 2010 IEEE Wireless Communications and Networking Conference (WCNC), Sydney, Australia, 18-21 April 2010. In Proceedings of WCNC, 2010, p. 1-
Interface placement in constructing widest spanning tree for multi-channel multi-interface wireless mesh networks
Proceedings of the IEEE Wireless Communications and Networking Conference, 2009, p. 2560-2564Widest spanning tree is a broadcast tree with its bottleneck link bandwidth maximized. It provides a cost effective broadcasting solution in multi-channel multi-interface wireless mesh networks. To find the widest spanning tree, existing algorithms jointly consider channel assignment, routing and scheduling while assuming the number of network interface cards (NICs) at each node is given. In this paper, we treat the number of NICs at each node as a design parameter, whereas the total number of NICs in the system is given. By properly placing more NICs to more "critical" nodes, the bandwidth of the spanning tree can be further increased. To this end, a new Integer Linear Programming (ILP) is formulated for solving the widest spanning tree problem based on joint optimization of interface placement, channel assignment, routing and scheduling. Numerical results show that interface placement provides a significant boost to the bandwidth of the widest spanning tree found. © 2009 IEEE.published_or_final_versio
J-CAR: An efficient channel assignment and routing protocol for multi-channel multi-interface mobile ad hoc networks
In Session: Wireless Ad Hoc and Sensor Networks towards Anytime Anywhere Internetworking: WSN-15: Resource Allocation: article no. WSN15-2We propose an efficient joint channel assignment and routing protocol (J-CAR) for multi-channel multi-interface mobile ad hoc networks (MANETs). Aiming at overcoming the limitations of the existing channel assignment and routing algorithms, J-CAR negotiates a channel at each active link during the route setup process. It has the following major features: a) a pre-determined common control channel is used by every node for routing and channel negotiation; b) control packets for data transmission (RTS, CTS & ACK) are carried by the associated data channels; c) the spare capacity on the control channel can be used for data transmission; d) an interface is free to change its working modes between send and receive; and e) an interface can tune to any data channels for data sending or receiving at the cost of switching overhead. With J-CAR, a more flexible assignment of interfaces, channels, and the working mode of each interface can be rendered. The performance gain brought by J-CAR is substantiated by extensive simulation results. © 2006 IEEE.published_or_final_versionProceedings of the Global Telecommunications Conference, 2006 (GLOBECOM 2006), San Francisco, CA, USA, 27 November - 1 December 200
Interface placement in constructing widest spanning tree for multi-channel multi-interface wireless mesh networks
Proceedings of the IEEE Wireless Communications and Networking Conference, 2009, p. 2560-2564Widest spanning tree is a broadcast tree with its bottleneck link bandwidth maximized. It provides a cost effective broadcasting solution in multi-channel multi-interface wireless mesh networks. To find the widest spanning tree, existing algorithms jointly consider channel assignment, routing and scheduling while assuming the number of network interface cards (NICs) at each node is given. In this paper, we treat the number of NICs at each node as a design parameter, whereas the total number of NICs in the system is given. By properly placing more NICs to more "critical" nodes, the bandwidth of the spanning tree can be further increased. To this end, a new Integer Linear Programming (ILP) is formulated for solving the widest spanning tree problem based on joint optimization of interface placement, channel assignment, routing and scheduling. Numerical results show that interface placement provides a significant boost to the bandwidth of the widest spanning tree found. © 2009 IEEE.published_or_final_versio
Public knowledge of how to use an automatic external defibrillator in out-of-hospital cardiac arrest in Hong Kong
published_or_final_versio
Chromosome in situ hybridisation, Ki-67, and telomerase immunocytochemistry in liquid based cervical cytology
Aims: To assess the potential value of chromosome in situ hybridisation (CISH), Ki-67, and telomerase immunocytochemistry in liquid based cervical cytology to help detect carcinoma cells and precursors. Method: Sixty ThinPrep processed cervical cytology samples were studied: 23 cases within the normal limit, 13 low grade squamous intraepithelial lesions (LSILs), 10 high grade squamous intraepithelial lesions (HSILs), six squamous cell carcinomas, three endocervical adenocarcinomas, two cervical adenosquamous cell carcinomas, and three endometrial adenocarcinomas. CISH was performed with DNA probes specific for the pericentromeric regions of chromosome 11 and 16. Hybridisation signals were visualised with the streptavidin-biotin peroxidase technique. The monoclonal MIB1 and polyclonal TRT-H231 antibodies were used to detect Ki-67 and telomerase immunoreactivity, respectively. Results: Non-specific background staining was almost absent in CISH slides. Normal squamous and glandular cells showed a diploid chromosomal pattern. A relative gain in chromosomes 11 and 16 (aneusomy) was seen in HSIL and the carcinomas (p<0.0001 ). In MIB1 stained smears, normal cells and koilocytes showed inconspicuous immunoreactivity, whereas strongly immunoreactive nuclei were found in cancer cells and HSIL (p<0.0001). Not only carcinoma and HSIL cells, but also some normal cells, showed cytoplasmic staining for telomerase. Conclusions: These preliminary results indicate that ThinPrep processed cervical smears are suitable for CISH and immunocytochemical studies. The neoplastic squamous and glandular cells were easily identified based on nuclear aneusomy and strong Ki-67 immuoreactivity in the context of abnormal nuclear morphology. This is the first study to apply CISH in cervical cytology using an immunoenzymatic approach.published_or_final_versio
Magnetic-field-induced charge redistribution in disordered graphene double quantum dots
We have studied the transport properties of a large graphene double quantum dot under the influence of a background disorder potential and a magnetic field. At low temperatures, the evolution of the charge-stability diagram as a function of the B field is investigated up to 10 T. Our results indicate that the charging energy of the quantum dot is reduced, and hence the effective size of the dot increases at a high magnetic field. We provide an explanation of our results using a tight-binding model, which describes the charge redistribution in a disordered graphene quantum dot via the formation of Landau levels and edge states. Our model suggests that the tunnel barriers separating different electron/hole puddles in a dot become transparent at high B fields, resulting in the charge delocalization and reduced charging energy observed experimentally.This work was financially supported by the European
GRAND project (ICT/FET, Contract No. 215752) and EPSRC
- …