2,757 research outputs found
Improving Robustness for Joint Optimization of Camera Poses and Decomposed Low-Rank Tensorial Radiance Fields
In this paper, we propose an algorithm that allows joint refinement of camera
pose and scene geometry represented by decomposed low-rank tensor, using only
2D images as supervision. First, we conduct a pilot study based on a 1D signal
and relate our findings to 3D scenarios, where the naive joint pose
optimization on voxel-based NeRFs can easily lead to sub-optimal solutions.
Moreover, based on the analysis of the frequency spectrum, we propose to apply
convolutional Gaussian filters on 2D and 3D radiance fields for a
coarse-to-fine training schedule that enables joint camera pose optimization.
Leveraging the decomposition property in decomposed low-rank tensor, our method
achieves an equivalent effect to brute-force 3D convolution with only incurring
little computational overhead. To further improve the robustness and stability
of joint optimization, we also propose techniques of smoothed 2D supervision,
randomly scaled kernel parameters, and edge-guided loss mask. Extensive
quantitative and qualitative evaluations demonstrate that our proposed
framework achieves superior performance in novel view synthesis as well as
rapid convergence for optimization.Comment: AAAI 2024. Project page:
https://alex04072000.github.io/Joint-TensoRF
Energy Efficient Massive MIMO System Design for Smart Grid Communications
Communication technologies are critical in achieving potential advantages of smart gird (SG), as they enable electric utilities to interact with their devices and customers. This paper focuses on the integration of a massive multiple-input multiple-output (MIMO) technique into a SG communication architecture. Massive MIMO has the benefits of offering higher data rates, whereas operating a large number of antennas in practice could increase the system complexity and energy consumption. We propose to use antenna selection to preserve the gain provided by the large number of antennas, and investigate an energy efficient massive MIMO system design for SG communications. Specifically, we derive a closed-form asymptotic approximation to the system energy efficiency function in consideration of channel spatial correlation, which exhibits an excellent level of accuracy for a wide range of system dimensions in SG communication scenarios. Based on the accurate approximation, we propose a novel antenna selection scheme aiming at maximizing the system energy efficiency, using only the long-term channel statistics. Simulation results show that the proposed antenna selection scheme can always achieve an energy efficiency gain compared to other selection schemes or baseline systems without antenna selection, and thus is particularly valuable for enabling an energy efficient communication system of the SG
Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation
While representation learning aims to derive interpretable features for
describing visual data, representation disentanglement further results in such
features so that particular image attributes can be identified and manipulated.
However, one cannot easily address this task without observing ground truth
annotation for the training data. To address this problem, we propose a novel
deep learning model of Cross-Domain Representation Disentangler (CDRD). By
observing fully annotated source-domain data and unlabeled target-domain data
of interest, our model bridges the information across data domains and
transfers the attribute information accordingly. Thus, cross-domain joint
feature disentanglement and adaptation can be jointly performed. In the
experiments, we provide qualitative results to verify our disentanglement
capability. Moreover, we further confirm that our model can be applied for
solving classification tasks of unsupervised domain adaptation, and performs
favorably against state-of-the-art image disentanglement and translation
methods.Comment: CVPR 2018 Spotligh
- …