5 research outputs found

    Reactive strategies for containing developing outbreaks of pandemic influenza

    Get PDF
    Abstract Background In 2009 and the early part of 2010, the northern hemisphere had to cope with the first waves of the new influenza A (H1N1) pandemic. Despite high-profile vaccination campaigns in many countries, delays in administration of vaccination programs were common, and high vaccination coverage levels were not achieved. This experience suggests the need to explore the epidemiological and economic effectiveness of additional, reactive strategies for combating pandemic influenza. Methods We use a stochastic model of pandemic influenza to investigate realistic strategies that can be used in reaction to developing outbreaks. The model is calibrated to documented illness attack rates and basic reproductive number (R0) estimates, and constructed to represent a typical mid-sized North American city. Results Our model predicts an average illness attack rate of 34.1% in the absence of intervention, with total costs associated with morbidity and mortality of US81millionforsuchacity.Attackratesandeconomiccostscanbereducedto5.481 million for such a city. Attack rates and economic costs can be reduced to 5.4% and US37 million, respectively, when low-coverage reactive vaccination and limited antiviral use are combined with practical, minimally disruptive social distancing strategies, including short-term, as-needed closure of individual schools, even when vaccine supply-chain-related delays occur. Results improve with increasing vaccination coverage and higher vaccine efficacy. Conclusions Such combination strategies can be substantially more effective than vaccination alone from epidemiological and economic standpoints, and warrant strong consideration by public health authorities when reacting to future outbreaks of pandemic influenza

    Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and Landmark Localization on 3D Intraoral Scans

    Full text link
    Accurately segmenting teeth and identifying the corresponding anatomical landmarks on dental mesh models are essential in computer-aided orthodontic treatment. Manually performing these two tasks is time-consuming, tedious, and, more importantly, highly dependent on orthodontists' experiences due to the abnormality and large-scale variance of patients' teeth. Some machine learning-based methods have been designed and applied in the orthodontic field to automatically segment dental meshes (e.g., intraoral scans). In contrast, the number of studies on tooth landmark localization is still limited. This paper proposes a two-stage framework based on mesh deep learning (called TS-MDL) for joint tooth labeling and landmark identification on raw intraoral scans. Our TS-MDL first adopts an end-to-end \emph{i}MeshSegNet method (i.e., a variant of the existing MeshSegNet with both improved accuracy and efficiency) to label each tooth on the downsampled scan. Guided by the segmentation outputs, our TS-MDL further selects each tooth's region of interest (ROI) on the original mesh to construct a light-weight variant of the pioneering PointNet (i.e., PointNet-Reg) for regressing the corresponding landmark heatmaps. Our TS-MDL was evaluated on a real-clinical dataset, showing promising segmentation and localization performance. Specifically, \emph{i}MeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at \textcolor[rgb]{0,0,0}{0.964±0.0540.964\pm0.054}, significantly outperforming the original MeshSegNet. In the second stage, PointNet-Reg achieved a mean absolute error (MAE) of 0.597±0.761mm0.597\pm0.761 \, mm in distances between the prediction and ground truth for 6666 landmarks, which is superior compared with other networks for landmark detection. All these results suggest the potential usage of our TS-MDL in orthodontics.Comment: 9 pages, 8 figures, accepted by IEEE TM
    corecore