81 research outputs found

    Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae

    Get PDF
    Acetaminophen (paracetamol), one of the most widely used analgesics, is toxic under conditions of overdose or in certain disease conditions, but the mechanism of acetaminophen toxicity is still not entirely understood. To obtain fresh insights into acetaminophen toxicity, this phenomenon was investigated in yeast. Acetaminophen was found to be toxic to yeast cells, with erg mutants displaying hypersensitivity. Yeast cells grown in the presence of acetaminophen were found to accumulate intracellular acetaminophen, but no metabolic products of acetaminophen could be detected in these extracts. The toxicity response did not lead to an oxidative stress response, although it did involve Yap1p. The cytochrome P450 enzymes of yeast, Erg5p and Erg11p, did not appear to participate in this process, unlike the mammalian systems. Furthermore, we could not establish a central role for glutathione depletion or the cellular glutathione redox status in acetaminophen toxicity, suggesting differences from mammalian systems in the pathways causing toxicity. Investigations of the resistance mechanisms revealed that deletion of the glutathione-conjugate pumps Ycf1p (a target of Yap1p) and Bpt1p, surprisingly, led to acetaminophen resistance, while overexpression of the multidrug resistance pumps Snq2p and Flr1p (also targets of Yap1p) led to acetaminophen resistance. The Yap1p-dependent resistance to acetaminophen required a functional Pdr1p or Pdr3p protein, but not a functional Yrr1p. In contrast, resistance mediated by Pdr1p/Pdr3p did not require a functional Yap1p, and revealed a distinct hierarchy in the resistance to acetaminophen

    Common molecular mechanism of the hepatic lesion and the cardiac parasympathetic regulation in chronic hepatitis C infection: a critical role for the muscarinic receptor type 3

    Get PDF
    Background: The pathophysiological overlapping between Sjorgens Syndrome (SS) and HCV, presence of anti-muscarinic receptor type 3 (M3R) antibodies in SS, the role that M3R plays in the regulation of the heart rate, has led to the assumption that cardiovagal dysfunction in HCV patients is caused by anti-M3R antibodies elicited by HCV proteins or by their direct interaction with M3R. Results: To identify HCV protein which possibly is crossreactive with M3R or which binds to this receptor, we performed the Informational Spectrum Method (ISM) analysis of the HCV proteome. This analysis revealed that NS5A protein represents the most probable interactor of M3R or that this viral protein could elicit antibodies which modulate function of this receptor. Further detailed structure/function analysis of NS5A and M3R performed by the ISM method extended with other Digital Signal processing (DSP) approaches revealed domains of these proteins which participate in their crossreactivity or in their direct interaction, representing promising diagnostic and therapeutic targets. Conclusions: Application of the ISM with other compatible bioinformatics methods offers new perspectives for identifying diagnostic and therapeutic targets for complicated forms of HCV and other viral infections. We show how the electron-ion interaction potential (EIIP) amino-acid scale used in the ISM combined with a robust, high performance hydrophobicity scale can provide new insights for understanding protein structure/function and protein-protein interactions

    Insights on the mechanism of formation of protein microspheres in a biphasic system

    Get PDF
    Microspheres of bovine serum albumin (BSA) and silk fibroin are produced by applying ultrasound in a biphasic system consisting of an aqueous protein solution and an organic solvent. The protein microspheres are dispersed in an aqueous media where the protein remains at the interface covering the organic solvent. This only occurs when high shear forces are applied that induce changes to force the protein to the interface. Fourier transform infrared results indicate a large increase in the content of the Ī²-sheet during the formation of silk fibroin microspheres. Molecular dynamics simulations show a clear adaption on the 3D structure of BSA when stabilized at the interface, without major changes in secondary structure. Further studies demonstrate that high water content, oil solvents, and larger peptides with separated and clear hydrophobic and hydrophilic areas lead to more stable and smaller spheres. This is the first time that these results are presented. We also present herein the rationale to produce tailored protein microspheres with a controlled size, controlled charge, and increased stability.This work was supported by Lidwine Project-Multifunctional medical textiles for wound (e.g., Decubitus) prevention and improved wound healing NMP2-CT-2006-026741. H.F. thanks POPH/FSE for cofinancing and FCT for Fellowship SFRH/BPD/38939/2007. We acknowledge Silvia Cappellozza from "Sezione Specializzata per la Bachicoltura" for the supply of silk cocoons

    Challenges facing early career academic cardiologists

    Get PDF
    Early career academic cardiologists currently face unprecedented challenges that threaten a highly valued career path. A team consisting of early career professionals and senior leadership members of American College of Cardiology completed this white paper to inform the cardiovascular medicine profession regarding the plight of early career cardiologists and to suggest possible solutions. This paper includes: 1) definition of categories of early career academic cardiologists; 2) general challenges to all categories and specific challenges to each category; 3) obstacles as identified by a survey of current early career members of the American College of Cardiology; 4) major reasons for the failure of physician-scientists to receive funding from National Institute of Health/National Heart Lung and Blood Institute career development grants; 5) potential solutions; and 6) a call to action with specific recommendations

    Status of Early-Career Academic Cardiology, A Global Perspective

    Get PDF
    Early career academic cardiologists, whom many believe are an important component of the future of cardiovascular care, face a myriad of challenges. The Early Career Section Academic Working Group of the American College of Cardiology (ACC) along with senior leadership support, assessed the progress of this cohort from 2013ā€“2016 with a global perspective. Data consisted of accessing National Heart Lung and Blood Institute (NHLBI) public information, American Heart Association and international organizations providing data, and a membership-wide survey. Although NHBLI increased funding of career development grants, only a small number of early career ACC members have benefited as funding of the entire cohort has decreased. Personal motivation, institutional support, and collaborators continued to be positive influential factors. Surprisingly, mentoring ceased to correlate positively with obtaining external grants. Totality of findings suggests that the status of early career academic cardiologists remain challenging; therefore, we recommend a set of attainable solutions

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    A Millifluidic Bulge Test for Multiscale Properties of Engineered Biofilms

    No full text
    Biofilms ā€“ communities of bacterial cells associated with their extracellular polymeric matrices ā€“ are complex materials whose features span many length scales, ranging from bulk cohesive material properties, to mesoscale structural and compositional heterogeneity, down to the microscopic cellular morphology and cell-cell interaction chemistry. Here, we demonstrate a tool to study the mechanical properties of biofilms across length scales from the mesoscale (0.2 mm) to the bulk (1 mm) using a simplified model system based on genetically engineered E. coli. Using a custom millifluidic device that suspends a 3 mm dia. biofilm across a support, we impose tunable hydrostatic pressure drops in the Pa-kPa range across the biofilm. The resulting deformation of the film through an aperture is visualized with optical coherence tomography and used to estimate bulk and mesoscale mechanical properties of the film. Our method requires only microliters of material, causes minimal disruption to the film structure, and allows for estimates of both average properties as well as local heterogeneity as a function of cell-cell interaction chemistry and biofilm damage and healing. In the final chapter we introduce other model biofilm systems for their unique optical and mechanical properties. </p
    • ā€¦
    corecore