2 research outputs found

    A Review on UAV Wireless Charging: Fundamentals, Applications, Charging Techniques and Standards

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for applications such as inspections, delivery, agriculture, surveillance, and many more. It is estimated that, by 2040, UAVs/drones will become a mainstream delivery channel to satisfy the growing demand for parcel delivery. Though the UAVs are gaining interest in civil applications, the future of UAV charging is facing a set of vital concerns and open research challenges. Considering the case of parcel delivery, handling countless drones and their charging will become complex and laborious. The need for non-contact based multi-device charging techniques will be crucial in saving time and human resources. To efficiently address this issue, Wireless Power Transmission (WPT) for UAVs is a promising technology for multi-drone charging and autonomous handling of multiple devices. In the literature of the past five years, limited surveys were conducted for wireless UAV charging. Moreover, vital problems such as coil weight constraints, comparison between existing charging techniques, shielding methods and many other key issues are not addressed. This motivates the author in conducting this review for addressing the crucial aspects of wireless UAV charging. Furthermore, this review provides a comprehensive comparative study on wireless charging's technical aspects conducted by prominent research laboratories, universities, and industries. The paper also discusses UAVs' history, UAVs structure, categories of UAVs, mathematical formulation of coil and WPT standards for safer operation.publishedVersio

    An Assessment of Shortest Prioritized Path-Based Bidirectional Wireless Charging Approach Toward Smart Agriculture

    Get PDF
    The agriculture sector has witnessed a transformation with the advent of smart sensing devices, leading to improved crop yield and quality. However, the management of data collection from numerous sensors across vast agricultural areas, as well as the associated charging requirements, presents significant challenges. This paper addresses the major research problem by proposing an innovative solution for charging agricultural sensors. The introduction of an energy-constrained device (ECD) enables wireless charging and transmission of soil data to a centralized server. The proposed ECDs will enable enhanced data collection, precision agriculture, optimized resource allocation, timely decision-making, and remote monitoring and control. A bidirectional wireless charging drone is employed to efficiently charge the ECDs. To optimize energy usage, a prioritized Dijkstra algorithm determines the ECDs to be charged and plans the shortest route for the drone. The wireless charging drone landing-charging station achieves an efficiency of 91.3%, delivering 72 W of power within a 5 mm range. Furthermore, the ECD possesses a data transmission range of 100 m and incorporates deep sleep functionality, allowing for a remarkable 30-day battery life.publishedVersio
    corecore