59 research outputs found

    Functional interaction between Env oncogene from Jaagsiekte sheep retrovirus and tumor suppressor Sprouty2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Jaagsiekte sheep retrovirus (JSRV) is a type D retrovirus capable of transforming target cells <it>in vitro </it>and <it>in vivo</it>. The Envelope <it>(Env) </it>gene from JSRV and from related retroviruses can induce oncogenic transformation, although the detailed mechanism is yet to be clearly understood. Host cell factors are envisaged to play a critical determining role in the regulation of <it>Env</it>-mediated cell transformation.</p> <p>Results</p> <p>JSRV <it>Env</it>-mediated transformation of a lung adenocarcinoma cell line induced rapid proliferation, anchorage-independent growth and tumor formation, but completely abrogated the migration ability. An analysis of the signaling scenario in the transformed cells suggested the involvement of the ERK pathway regulated by Sprouty2 in cell migration, and the PI3K-Akt and STAT3 pathways in proliferation and anchorage-independence. On the other hand, in a normal lung epithelial cell line, <it>Env</it>-mediated transformation only decreased the migration potential while the other functions remained unaltered. We observed that <it>Env </it>induced the expression of a tumor suppressor, Sprouty2, suggesting a correlation between <it>Env</it>-effect and Sprouty2 expression. Overexpression of Sprouty2 <it>per se </it>not only decreased the migratory potential and tumor formation potential of the target cells but also made them resistant to subsequent <it>Env</it>-mediated transformation. On the other hand, over expression of the functional mutants of Sprouty2 had no inhibitory effect, confirming the role of Sprouty2 as a tumor suppressor.</p> <p>Conclusions</p> <p>Our studies demonstrate that <it>Env </it>and Sprouty2 have a functional relationship, probably through shared signaling network. Sprouty2 functions as a tumor suppressor regulating oncogenic transformation of cells, and it therefore has the potential to be exploited as a therapeutic anti-cancer agent.</p

    Human SCARB2-Mediated Entry and Endocytosis of EV71

    Get PDF
    Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus

    Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse

    Get PDF
    Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33–41), 13 (F214–222), 14 (F273–281), and 23 (F559–567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-γ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine

    Anal Papilloma: An Exceptional Presentation of Fibrocystic Disease in Anogenital Mammary-Like Glands

    No full text
    Previously ectopic breast tissue was thought to be derived from the caudal remnants of the primitive embryonic milk ridges; anogenital mammary-like glands are presently considered as normal constituents of the anogenital region. We report a case of young female, who presented with an anal papilloma. Histopathological examination revealed extensive fibrocystic changes in anogenital mammary-like glands. To date, a lot of benign changes and a wide range of benign and malignant neoplasms have been reported in these glands. However, extensive fibrocystic change of these glands in anal region is very rare. In addition, fibrocystic disease of anal mammary glands, masquerading clinically as an anal papilloma, has not been reported in literature. Hence, it is essential for clinicians and the pathologists to be aware of such a rare presentation. The features of fibrocystic disease in perianal region are also discussed

    Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics.

    No full text
    Staphylococcus epidermidis, is a common microflora of human body that can cause opportunistic infections associated with indwelling devices. It is resistant to multiple antibiotics necessitating the need for naturally occurring antibacterial agents. Malaysian propolis, a natural product obtained from beehives exhibits antimicrobial and antibiofilm properties. Chitosan-propolis nanoparticles (CPNP) were prepared using Malaysian propolis and tested for their effect against S. epidermidis. The cationic nanoparticles depicted a zeta potential of +40 and increased the net electric charge (zeta potential) of S. epidermidis from -17 to -11 mV in a concentration-dependent manner whereas, ethanol (Eth) and ethyl acetate (EA) extracts of propolis further decreased the zeta potential from -17 to -20 mV. Confocal laser scanning microscopy (CLSM) depicted that CPNP effectively disrupted biofilm formation by S. epidermidis and decreased viability to ~25% compared to Eth and EA with viability of ~60-70%. CPNP was more effective in reducing the viability of both planktonic as well as biofilm bacteria compared to Eth and EA. At 100 μg/mL concentration, CPNP decreased the survival of biofilm bacteria by ~70% compared to Eth or EA extracts which decreased viability by only 40%-50%. The morphology of bacterial biofilm examined by scanning electron microscopy depicted partial disruption of biofilm by Eth and EA extracts and significant disruption by CPNP reducing bacterial number in the biofilm by ~90%. Real time quantitative PCR analysis of gene expression in treated bacteria showed that genes involved in intercellular adhesion such as IcaABCD, embp and other related genes were significantly downregulated by CPNP. In addition to having a direct inhibitory effect on the survival of S. epidermidis, CPNP showed synergism with the antibiotics rifampicin, ciprofloxacin, vancomycin and doxycycline suggestive of effective treatment regimens. This would help decrease antibiotic treatment dose by at least 4-fold in combination therapies thereby opening up ways of tackling antibiotic resistance in bacteria

    Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms.

    No full text
    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections

    Effect of madecassoside in reducing oxidative stress and blood glucose in streptozotocin–nicotinamide-induced diabetes in rats

    No full text
    Objectives Madecassoside (MAD) is a triterpenoid constituent of Centella asiatica (L.) Urb., an ethnomedical tropical plant, extracts of which were shown to reduce blood glucose in experimental diabetes. This study examines MAD for its anti-hyperglycaemic effects and tests the hypothesis that it reduces the blood glucose in experimentally induced diabetic rats by protecting the β-cells. Methods Diabetes was induced using streptozotocin (60 mg/kg, i.v.) followed by nicotinamide (210 mg/kg, intraperitoneal (i.p.)). MAD (50 mg/kg) was administered orally for 4 weeks, commencing 15 days after induction of diabetes; resveratrol (10 mg/kg) was used as a positive control. Fasting blood glucose, plasma insulin, HbA1c, liver and lipid parameters were measured, along with antioxidant enzymes and malondialdehyde as an index of lipid peroxidation; histological and immunohistochemical studies were also undertaken. Key findings MAD normalized the elevated fasting blood glucose levels. This was associated with increased plasma insulin concentrations. MAD alleviated oxidative stress by improving enzymatic antioxidants and reducing lipid peroxidation. Histopathological examination showed significant recovery of islet structural degeneration and an increased area of islets. Immunohistochemical staining showed increased insulin content in islets of MAD-treated rats. Conclusions The results demonstrate an antidiabetic effect of MAD associated with preservation of β-cell structure and function

    Depletion of regulatory T-cells leads to moderate B-cell antigenicity in respiratory syncytial virus infection

    Get PDF
    Objectives: The regulation of the immunopathology of respiratory syncytial virus (RSV) by regulatory T-cells (CD4+CD25+Foxp3+; Tregs) is not understood. Methods: To deduce the same, Tregs were depleted in BALB/c mice by injecting anti-CD25 antibody followed by RSV infection (anti-CD25-RSV mice). Results: In this model, a decrease in anti-fusion (F) antibody and neutralizing activity, and an increase in anti-nucleocapsid (N) antibody in serum, were seen. Decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity, increased IgG2a, and an influx of activated CD8+ T-cells into the lungs were also observed. Co-culture of splenic CD45RA+ B-cells from RSV-infected normal mice with CD4+ cells isolated from anti-CD25-RSV mice (B/CD4) increased anti-F antibody secretion. The inclusion of CD25+ Tregs isolated from isotype Ig-RSV mice into the B/CD4 co-culture substantially enhanced the frequency of anti-F antibody production. However, the same effect was not seen in the co-culture of CD45RA+ B-cells with dendritic cells (DCs) (B/DCs) or CD8+ cells (B/CD8) that were obtained from anti-CD25-RSV mice. The transfer of enriched B-cells from anti-CD25-RSV mice into RSV-infected SCID mice increased severe lung inflammation associated with the increased viral load and eosinophil number. Conclusions: These results indicate that Tregs modulate B-cell activity, particularly in producing F-specific neutralizing antibodies, to regulate RSV-mediated exacerbated diseases
    corecore