1,243 research outputs found

    Random Walks on Hypergraphs with Edge-Dependent Vertex Weights

    Full text link
    Hypergraphs are used in machine learning to model higher-order relationships in data. While spectral methods for graphs are well-established, spectral theory for hypergraphs remains an active area of research. In this paper, we use random walks to develop a spectral theory for hypergraphs with edge-dependent vertex weights: hypergraphs where every vertex vv has a weight γe(v)\gamma_e(v) for each incident hyperedge ee that describes the contribution of vv to the hyperedge ee. We derive a random walk-based hypergraph Laplacian, and bound the mixing time of random walks on such hypergraphs. Moreover, we give conditions under which random walks on such hypergraphs are equivalent to random walks on graphs. As a corollary, we show that current machine learning methods that rely on Laplacians derived from random walks on hypergraphs with edge-independent vertex weights do not utilize higher-order relationships in the data. Finally, we demonstrate the advantages of hypergraphs with edge-dependent vertex weights on ranking applications using real-world datasets.Comment: Accepted to ICML 201

    Orbital selective crossover and Mott transitions in an asymmetric Hubbard model of cold atoms in optical lattices

    Get PDF
    We study the asymmetric Hubbard model at half-filling as a generic model to describe the physics of two species of repulsively interacting fermionic cold atoms in optical lattices. We use Dynamical Mean Field Theory to obtain the paramagnetic phase diagram of the model as function of temperature, interaction strength and hopping asymmetry. A Mott transition with a region of two coexistent solutions is found for all nonzero values of the hopping asymmetry. At low temperatures the metallic phase is a heavy Fermi-liquid, qualitatively analogous to the Fermi liquid state of the symmetric Hubbard model. Above a coherence temperature, an orbital-selective crossover takes place, wherein one fermionic species effectively localizes, and the resulting bad metallic state resembles the non-Fermi liquid state of the Falicov-Kimball model. We compute observables relevant to cold atom systems such as the double occupation, the specific heat and entropy and characterize their behavior in the different phases

    Weak coupling study of decoherence of a qubit in disordered magnetic environments

    Get PDF
    We study the decoherence of a qubit weakly coupled to frustrated spin baths. We focus on spin-baths described by the classical Ising spin glass and the quantum random transverse Ising model which are known to have complex thermodynamic phase diagrams as a function of an external magnetic field and temperature. Using a combination of numerical and analytical methods, we show that for baths initally in thermal equilibrium, the resulting decoherence is highly sensitive to the nature of the coupling to the environment and is qualitatively different in different parts of the phase diagram. We find an unexpected strong non-Markovian decay of the coherence when the random transverse Ising model bath is prepared in an initial state characterized by a finite temperature paramagnet. This is contrary to the usual case of exponential decay (Markovian) expected for spin baths in finite temperature paramagnetic phases, thereby illustrating the importance of the underlying non-trivial dynamics of interacting quantum spinbaths.Comment: 12 pages, 18 figure

    Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices

    Get PDF
    We study the phase diagram of the asymmetric Hubbard model (AHM), which is characterized by different values of the hopping for the two spin projections of a fermion or equivalently, two different orbitals. This model is expected to provide a good description of a mass-imbalanced cold fermionic mixture in a 3D optical lattice. We use the dynamical mean field theory to study various physical properties of this system. In particular, we show how orbital-selective physics, observed in multi-orbital strongly correlated electron systems, can be realized in such a simple model. We find that the density distribution is a good probe of this orbital selective crossover from a Fermi liquid to a non-Fermi liquid state. Below an ordering temperature ToT_o, which is a function of both the interaction and hopping asymmetry, the system exhibits staggered long range orbital order. Apart from the special case of the symmetric limit, i.e., Hubbard model, where there is no hopping asymmetry, this orbital order is accompanied by a true charge density wave order for all values of the hopping asymmetry. We calculate the order parameters and various physical quantities including the thermodynamics in both the ordered and disordered phases. We find that the formation of the charge density wave is signaled by an abrupt increase in the sublattice double occupancies. Finally, we propose a new method, entropic chromatography, for cooling fermionic atoms in optical lattices, by exploiting the properties of the AHM. To establish this cooling strategy on a firmer basis, we also discuss the variations in temperature induced by the adiabatic tuning of interactions and hopping parameters.Comment: 16 pages, 19 fig

    Effective action approach to strongly correlated fermion systems

    Full text link
    We construct a new functional for the single particle Green's function, which is a variant of the standard Baym Kadanoff functional. The stability of the stationary solutions to the new functional is directly related to aspects of the irreducible particle hole interaction through the Bethe Salpeter equation. A startling aspect of this functional is that it allows a simple and rigorous derivation of both the standard and extended dynamical mean field (DMFT) equations as stationary conditions. Though the DMFT equations were formerly obtained only in the limit of infinite lattice coordination, the new functional described in the work, presents a way of directly extending DMFT to finite dimensional systems, both on a lattice and in a continuum. Instabilities of the stationary solution at the bifurcation point of the functional, signal the appearance of a zero mode at the Mott transition which then couples t o physical quantities resulting in divergences at the transition.Comment: 9 page

    Superlattice switching from parametric instabilities in a driven-dissipative BEC in a cavity

    Get PDF
    We numerically obtain the full time-evolution of a parametrically-driven dissipative Bose-Einstein condensate in an optical cavity and investigate the implications of driving for the phase diagram. Beyond the normal and superradiant phases, a third nonequilibrium phase emerges as a manybody parametric resonance. This dynamical normal phase switches between two symmetry-broken superradiant configurations. The switching implies a breakdown of the system's mapping to the Dicke model. Unlike the other phases, the dynamical normal phase shows features of nonintegrability and thermalization.Comment: 5 pages, 3 figure

    Impurity effects in the quantum kagome system ZnCu3(OH)6Cl2

    Get PDF
    Motivated by the recent experiments on the new spin half Kagome compound ZnCu3(OH)6Cl2, we study a phenomenological model of a frustrated quantum magnet. The model has a spin liquid groundstate and is constructed so as to mimic the macroscopically large quasi-degeneracies expected in the low-lying energy structure of a Kagome system. We use numerical studies of finite size systems to investigate the static as well as the dynamical response at finite temperatures. The results obtained using our simple model are compatible with a large number of recent experiments including neutron scattering data. Our study suggests that many of the anomalous features observed in experiments have a natural interpretation in terms of a spin-1/2 defects (impurities) coupled to an underlying Kagome-type spin liquid.Comment: text+5fig
    • …
    corecore