58 research outputs found

    Spectral control for ecological stability

    Get PDF
    A system made up of N interacting species is considered. Self-reaction terms are assumed of the logistic type. Pairwise interactions take place among species according to different modalities, thus yielding a complex asymmetric disordered graph. A mathematical procedure is introduced and tested to stabilise the ecosystem via an {\it ad hoc} rewiring of the underlying couplings. The method implements minimal modifications to the spectrum of the Jacobian matrix which sets the stability of the fixed point and traces these changes back to species-species interactions. Resilience of the equilibrium state appear to be favoured by predator-prey interactions

    Generating directed networks with prescribed Laplacian spectra

    Get PDF
    Complex real-world phenomena are often modeled as dynamical systems on networks. In many cases of interest, the spectrum of the underlying graph Laplacian sets the system stability and ultimately shapes the matter or information flow. This motivates devising suitable strategies, with rigorous mathematical foundation, to generate Laplacian that possess prescribed spectra. In this paper, we show that a weighted Laplacians can be constructed so as to exactly realize a desired complex spectrum. The method configures as a non trivial generalization of existing recipes which assume the spectra to be real. Applications of the proposed technique to (i) a network of Stuart-Landau oscillators and (ii) to the Kuramoto model are discussed. Synchronization can be enforced by assuming a properly engineered, signed and weighted, adjacency matrix to rule the pattern of pairing interactions
    • …
    corecore