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Complex real-world phenomena are often modeled as dynamical systems on networks. In

many cases of interest, the spectrum of the underlying graph Laplacian sets the system sta-

bility and ultimately shapes the matter or information flow. This motivates devising suitable

strategies, with rigorous mathematical foundation, to generate Laplacians that possess pre-

scribed spectra. In this paper, we show that a weighted Laplacian can be constructed so

as to exactly realize a desired complex spectrum. The method configures as a non trivial

generalization of existing recipes which assume the spectra to be real. Applications of the

proposed technique to (i) a network of Stuart-Landau oscillators and (ii) to the Kuramoto

model are discussed. Synchronization can be enforced by assuming a properly engineered,

signed and weighted, adjacency matrix to rule the pattern of pairing interactions.
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I. INTRODUCTION

Complex networks play a role of paramount importance for a wide range of problems,

of cross-disciplinary breadth. In several cases of interest, networks define the skeleton of

pairwise interaction between coupled populations, families of homogeneous constituents an-

chored to a given node of the collections. The nature of existing paired relationships between

mutually entangled populations is encoded in the weight of the links, that bridge adjacent

nodes. Cooperative and competitive interactions can, in principle, be accommodated for

by allowing for the weights to take positive or negative values. Local and remote non linear

couplings shape the ensuing dynamics, and possibly steer the system towards a stationary

stable equilibrium which is compatible with the assigned initial condition. The stability

of the fixed points can be analyzed by studying the dynamical system in its linearized

version. For reaction-diffusion systems defined on networks, the stability of the inspected

equilibrium is ultimately dictated by the spectrum of the discrete Laplacian matrix [1–3].

The eigenvalues of the Laplacian define, in fact, the support of the dispersion relation, the

curve that sets the rate for the exponential growth of the imposed perturbation. More

specifically, external disturbances can be, in general, decomposed on the basis formed by

the eigenvectors of the Laplacian operator. Each eigenvector defines an independent mode,

which senses the web of intricate paths made accessible across the network: the perturbation

can eventually develop, or, alternatively, fade away, along the selected direction, depending

on the corresponding entry of the dispersion relation, as fixed by its associated eigenvalues.

Stability is an attribute of paramount importance as it relates to resilience, the ability of a

given system to oppose to external perturbations that would take it away from the existing

equilibrium. Similarly, synchronization, a widespread phenomenon in distributed systems,

can be enforced by properly adjusting the spectrum of the matrix which encodes for in-

tertwined pairings. Based on the above, it is therefore essential to devise suitably tailored

recipes for generating networks, which display a prescribed Laplacian spectrum, compatible

with the stability constraint [4, 5].
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The problem of recovering a network from a set of assigned eigenvalues has been tackled

in the literature both from an algorithmic [6–8] and formal [9–11] standpoints. In [10], a

procedure is discussed to generate an undirected and weighted graph from its spectrum.

The result extends beyond the well-known theorem of Botti and Merris [12] which states

that the reconstruction of non-weighted graphs is, in general, impossible since almost all

(non-weighted) trees share their spectrum with another non-isomorphic tree. In [13], a

method is proposed to obtain a, directed or undirected, graph whose eigenvalues are con-

strained to match specific bounds, which ultimately reflect the nodes degrees, as well as

the associated weights. In [14], a mathematically rigorous strategy is instead developed to

yield weighted graphs which exactly realize any desired spectrum. As discussed in [14], the

method translates into an efficient approach to control the dynamics of various archetypal

physical systems via suitably designed Laplacian spectra. The results are however limited

to undirected Laplacians, characterized by a real spectrum. The purpose of this paper is

to expand beyond these lines, by proposing and testing a procedure which enables one to

recover a signed Laplacian operator which displays a prescribed complex spectrum. Signed

Laplacians are often used in the literature for applications which relate to social contagion,

cluster synchronization or repulsive-attractive interactions [19, 20]. In engineering, they are

often employed in modeling microgrids dynamics [21].

The paper is organized as follows. The first section is devoted to illustrating the devised

method, focusing on the mathematical aspects. We then turn to discussing the imple-

mentation of the scheme and introducing the sparsification algorithms that are run to cut

unessential links. In the subsequent section, we elaborate on the conditions that are to be

met to generate a positively weigthed network. This discussion is carried out with reference

to a specific setting. Then, we apply the newly introduced technique to the study of an

ensemble made of coupled Stuart-Landau oscillators [22–24] and to (a simplified version of)

the Kuramoto model [27, 28]. Finally, in the last section, we sum up the contributions and

provide concluding remarks.
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II. A RECIPE TO OBTAIN A LAPLACIAN WITH ASSIGNED COMPLEX

EIGENVALUES.

Consider a network made of Ω nodes and denote by A the (weighted) adjacency matrix,

where structural information is encoded. More precisely, the element Aij is different from

zero when a directed link exists from j to i. The entries of the matrix A are real numbers

and their signs reflect the specificity of the interaction at play: negative signs stand for

inhibitory (or antagonistic) couplings, while positive entries point to excitatory (or coop-

erative) interaction. From the adjacency matrix, one can define its associated Laplacian

operator. This is the matrix L, whose elements are Lij = Aij − kiδij , where ki =
∑

j Aij

represents the natural extension of the concept of (incoming) connectivity to the case of a

weighted network and δij denotes the Kronecker delta.

We shall here discuss a procedure to generate a Laplacian matrix, which displays a

prescribed set of eigenvalues. As anticipated above, we will focus in particular on directed

Laplacians, which yields, in general, complex spectra. Concretely, we begin by introducing

a collection of Ω = 2N + 1 complex quantities defined as 1

{Λi} = {Λ1,Λ2, . . . ,Λ2N ,Λ2N+1 = 0} (1)

The first 2N elements come in complex conjugate pairs and we set in particular Λi = Λ∗i+N ,

∀ i = 1, ..., N , where (·)∗ stands for complex conjugate. The aim of this section is to develop

a rigorous procedure to construct a directed (and weighted) graph G with 2N + 1 vertices,

whose associated Laplacian has {Λi} for eigenvalues. Recall that {Λi} contains the null

element, since this latter is, by definition, a Laplacian’s eigenvalue.

The procedure that we are going to detail in what follows exploits the eigenvalue decom-

position of the Laplacian matrix. To this end we will seek to introduce a proper eigenvector
1 We shall assume all the eigenvalues but 0 to be complex numbers. Let us remark that the method

developed readily adapts to the case where also real eigenvalues are present. In this case, the eigenvectors

associated to real eigenvalues are generated according to the prescriptions of [14]. Eigenvectors linked to

complex eigenvalues are instead assigned following the procedure outlined here.
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basis such that

L = V DV −1 (2)

is a Laplacian. In Eq. (2), D is a diagonal matrix where the sought Laplacian eigenvalues

are stored. More specifically, Dii = Λi−1 for i = 2, .., 2N + 1 and D11 = Λ2N+1 = 0. The

problem is hence traced back to constructing V , whose columns are the right eigenvectors

of L. We also recall that rows of the inverse matrix V −1 are the left eigenvectors of L. As

outlined in [15], Laplacian (right and left) eigenvectors should satisfy a set of conditions:

1. The columns of V , which refer to complex conjugate eigenvalues, must be complex

conjugate too.

2. The same condition holds for the rows of V −1.

3. Moreover, the columns of V (resp. the rows of V −1) corresponding to eigenvalues

different from 0 should sum up to zero.

4. Finally, the right eigenvector relative to the null eigenvalue should be uniform (i.e.

display identical components).

In light of the above, we put forward for V the following structure:

V =


c vT vT

∗

cu iU −iU

cu U U

 (3)

where c is an arbitrary constant , i stands for the imaginary unit, U is an invertible N ×N 

matrix having real entries. Further, vector u = (1. ..1)T has dimension N × 1 and vector 

v is defined as

vT = −(1 + i)uTU (4)
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The first column of V is hence a uniform vector, corresponding to the eigenvector associated

to the null eigenvalue. By construction, every other column sums up to zero, that is (4)

holds. In the following, we will write Djj = αj + iβj , which, in turn, implies Dj+N,j+N =

αj−iβj , for j = 2, . . . , N+1. Here, αj and βj are real quantities and respectively denote the

real and imaginary parts of the j-th eigenvalue. To proceed further, one needs to determine

the inverse of V .

To achieve this goal we begin by considering a generic matrix W , which satisfies the

general constraints that are in place for V −1. In formulae:

W =


d duT duT

(1− i)w S −iS∗

(1 + i)w∗ S∗ iS

 (5)

where

w = − 1

1− i
(Su− iS∗u) (6)

Note that the jth and (N + j)th rows of W , for j = 1, .., N +1, are complex conjugated,

as required. Moreover, summing all the elements of each row (but the first) yields zero,

a condition that the inverse of V should meet, as anticipated above. Building on these

premises, we shall here determine the unknown S, w and d so as to match the identity

WV = I, where I stands for the (2N +1)× (2N +1) identity matrix. This implies, in turn,

that W ≡ V −1 due to the uniqueness of the inverse matrix.

A straightforward manipulation yields the following conditions for, respectively, d and

w 
d = 1

c(2N+1)

wvT = i(S − iS∗)EU

wvT
∗

= (S − iS∗)EU

(7)
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where use has been made of the identity uTu = N and where

E = uuT =


1 . . . 1
...

. . .
...

1 . . . 1

 (8)

The quantity d is completely specified by the first of Eqs. (7) and solely depends on c and

N , the size of the system. By making use of the identities (4) and (6), one can progress in

the analysis of the second and third conditions (7) to eventually get:

SB + S∗A = I (9)

SA− S∗B = 0 (10)

where:

A = EU − iEU − iU (11)

B = iEU + EU + iU (12)

It is, therefore, immediate to conclude that

S = (B +AB−1A)−1 (13)

S∗ = (B +AB−1A)−1AB−1 (14)

The analysis can be pushed further to relate S to matrices U and E. The calculation,

detailed in Appendix A, yields

S = − i
2
U−1

[
I − 1 + i

1 + 2N
E

]
(15)

The expression for S∗ can be immediately obtained by taking the complex conjugate of

the above equation. In conclusion, the matrix W defined in (5) is the inverse matrix of V ,

provided that d and S are respectively assigned as specified above.
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Clearly, matrix L defined in (2) has the desired spectrum (1). We should, however, prove

that L is a Laplacian. This amounts to showing that L is a real matrix, whose columns

sum up to zero. The proof is given hereafter.

Proposition. Matrix L is real.

From Eqs. (3) and (5), one can readily compute the elements of L via matrix products

and, taking advantage of the block structures of V and W , prove that L is real. <(·) is

introduced to represent the real part of (·). The generic element Lst can be written as:

Lst = (V DW )st =

2N+1∑
k=1

Vsk(DW )kt =

2N+1∑
k=1

Vsk

2N+1∑
k′=1

Dkk′Wk′t (16)

=
2N+1∑
k=2

VskDkkWkt (17)

due to the diagonal structure of the matrix D and recalling that D11 = 0. By making use

of the specific form of V and W , one gets:

Lst =
N+1∑
k=2

VskDkkWkt +
2N+1∑
k=N+2

VskDkkWkt (18)

=
N+1∑
k=2

VskDkkWkt +
N+1∑
k=2

(VskDkkWkt)
∗ (19)

=

N+1∑
k=2

2<(VskDkkWkt) (20)

since αβ+α∗β∗ = 2<(αβ), for any complex numbers α and β. One can thus conclude that

L, as generated by the above procedure, is real.

Proposition. Each column of L sums up to zero.

Because of the diagonal structure of D:∑
i

Lij =
∑
il

VilDllV
−1
lj (21)
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Then:

∑
i

Lij =
∑
l

V −1lj Dll

∑
i

Vil = 0 (22)

since (i) D11 = 0 and (ii) the components of all eigenvectors corresponding to non-null

eigenvalues, sum up to zero. Notice that this result can also be proven by observing that

the uniform vector d1 is the left eigenvector corresponding to the null eigenvalue, that is

d1L = 0 (23)

From (23), it follows that
∑

i Lij = 0, for every j.

Proposition. L is balanced.

We can also show that
∑

j Lij = 0 i.e. that the sum of all the elements of any given row i

returns zero. According to (2), the first column of V is the right eigenvector corresponding

to eigenvalue 0, namely

Lc1 = cL1 = 0 (24)

This implies, in turn,
∑

j Lij = 0 ∀i, which ends the proof. The Laplacian is hence balanced,

as the sums on the rows and on the (corresponding) columns return the same result.

From the generated Laplacian operator, one can readily calculate the adjacency matrix

of the underlying network. In general, for any assigned spectrum, the recovered adjacency

matrix is fully connected, meaning that there exist links connecting each pair of nodes.

Notice that links are weighted and signed. The weights can be small or have a modest

impact on the spectrum of the associated Laplacian. This motivates the implementation

of a dedicated sparsification procedure, which seeks to remove unessential links, in terms

of their reflection on the ensuing Laplacian spectrum. The next section is devoted to

elaborating along these lines.
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III. EXAMPLES AND SPARSIFICATION.

In this section we discuss a sparsification procedure, which aims at a posteriori simplify-

ing the structure of the recovered network. To this end, we begin by generating a network

following the strategy outlined in the preceding section, and which yields an assigned spec-

trum for the associated Laplacian. The Laplacian spectrum that we seek to recover consists

of Ω = 2N + 1 complex entries, the eigenvalues, which are here confined in the left portion

of the complex plane, by setting <(Λj) = αj < 0 for j ≥ 2, see blue crosses in Fig. 1 (a).

This choice is somehow arbitrary, and ultimately amounts to enforce stability into a linear

system of the form:

dxi
dt

=
∑
j

Lijxj (25)

where xi is the i-th entry of the Ω-dimensional state vector x. In the final part of the paper,

we will turn to considering more complex scenarios where the stability of the examined

dynamics is also influenced by local reaction terms.

The network that we obtain, following the scheme outlined in the preceding sections

yielding a Laplacian with the prescribed spectrum, is in general fully connected. In other

words, a weighted link exists between any pair of nodes. The weights of the link can be,

in principle, very small and, as such, bear a modest imprint on the ensuing Laplacian

spectrum. Motivated by this observation, we perform an a posteriori sparsification of the

obtained network: this aims to identifying and then removing the finite subset of links that

appear to have a modest impact on the eigenvalues of the associated Laplacian.

The first sparsification procedure that we have considered, aims at removing unessential

links while confining the spectrum of the Laplacian operator within a bounded region of the

complex plane. More precisely, we focus on the links which display a weight in the range (-σ,

σ), where σ is a small, arbitrarily chosen, cut off. All links whose weight is smaller that σ in

absolute value are selected, in a random order. The selected link is removed and the modified
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Figure 1. The recipe discussed in the main text is applied to generate a network of Ω = 2N+1 = 101

nodes, whose associated Laplacian displays the spectrum depicted (blue stars) in panel (a). The

spectrum of the Laplacian obtained from the sparsified network is shown with red circles. We here

follow the first sparsification recipe as illustrated in the main body of the paper. More specifically,

we trim unessential links, chosen among those that bear very modest weights, while confining the

Laplacian spectrum in a bounded domain, located in the negative portion of the complex plane. Here,

σ is 0.01 and δ = 0.5. In panel (b), the sparsity pattern of the adjacency matrix obtained upon

application of the sparsification algorithm is shown. The entries of the adjacency matrices, before

and after the sparsification are respectively plotted, with an appropriate color-code, in panels (c) and

(d). The main structure of the network is preserved upon application of the devised sparsification

protocol.
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Laplacian spectrum computed. Denote by Λ̃j , for j = 2, ..., 2N + 1, the Laplacian eigenval-

ues obtained upon removal of the link. The change to the network arrangement becomes

permanent, if |minj
[
<(Λ̃j)

]
−minj [<(Λj)] | < δ and |maxj

[
=(Λ̃j)

]
−maxj [=(Λj)] | < δ,

for j = 2, ..., N . Here =(·) stands for the imaginary part of (·) and δ is an arbitrary thresh-

old which quantifies the amount of perturbation that is deemed acceptable for the problem

at hand. As a further condition, we check that <(Λ̃j) < 0 for j = 2, ..., 2N + 1, which, in

turn, corresponds to preserving the stability of the linear system (25). Clearly, the order of

extraction of the links, which are candidate to be trimmed, matters. Different realizations

of the procedure of progressive sparsification illustrated above might hence result in distinct

final outcomes. In Fig. 1(a), the eigenvalues obtained after the sparsification algorithm are

plotted (red circles) for one choice of the cutoff δ. The sparsity pattern of the adjacency

matrix obtained at the end of the above procedure is displayed in panel (b) of Fig. 1.

In panels (c) and (d) of Fig. 1 we plot, with an appropriate color code, the entries of the

adjacency matrices, before and after the sparsification. Only weights which are significantly

different from zero (see annexed colorbars) are displayed. As appreciated by visual inspec-

tion, the skeleton of the network is not altered by the applied sparsification. To monitor

how the eigenvalues get redistributed within the bounded domain to which they belong, we

introduce the following indicators:

Ix =

2N+1∑
i=2

(βi)
2 (26)

Iy =
2N+1∑
i=2

(
αi −

1

2N + 1

2N+1∑
j=2

αj

)2

(27)

The quantity Ix measures the dispersion along the imaginary axis, by weighting the

squared distance of each eigenvalue from the horizontal axis. Conversely, Iy reflects the

scattering of the eigenvalues about their mean, in the direction of the real axis. In Fig. 2,

Ix and Iy, normalized to their respective values obtained before application of the sparsifi-
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Figure 2. Panel (a): Ix as measured at the end of the sparsification and normalized to the corre-

sponding value, before the sparsification is plotted versus N , the size of the explored network. Panel

(b): Iy, calculated after the sparsification and normalized to the corresponding value, before the

sparsification is depicted versus N . In both cases, blue symbols are computed, as the average over

15 different realizations of the generated network (with the same given spectrum). For each value of

N , the real and imaginary components of the eigenvalues are random number, drawn from a normal

distribution. The solid line is a guide for the eye. Here, δ = 0.5 and σ = 0.01.

cation algorithm, are shown versus N , an indicator of the size of the generated networks.

The sparsification procedure shrinks the eigenvalues in the x-direction, while the opposite

tendency is observed for the distribution along the y-direction.

The second sparsification method implements a more stringent constraint. Just like

before, we select the links with weights in the range (-σ, σ), where σ acts as a small

threshold amount. Unlike the former case, we now eliminate the selected link only if the

change produced on the modulus of each of the N eigenvalues is smaller than δ, namely if

|Λj−Λ̃j | < δ, for j = 2, ..., 2N+1. In Fig. 3, the eigenvalues obtained after the sparsification

algorithm are plotted (red circles) for two choices of the cutoff δ. The number of links that

can be effectively removed grows with δ, the size of the allowed perturbation, as clearly

demonstrated in Fig. 4.

As mentioned above, this latter method implements a local, hence stringent, constraint. 

By allowing modest re-arrangements of individual eigenvalues yields a spectral distribution
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Figure 3. Effect of the second method of sparsification on a network made of Ω = 2N + 1 = 101

nodes. The original spectrum is plotted with (blue) stars. The modified one with (red) circles. Panel

(a) refers to δ = 0.07 while panel (b) to δ = 0.2. Here, σ = 0.01.

in the complex plane which is by construction close to the original one. This method is 

better suited when the room for maneuver is limited, due to the specific constraints that 

the reactive model implements. On the other hand the number of pruned links can be 

scanty, when small local perturbations are solely allowed for. A global re-organization of 

the operator’s spectrum, which entails a significant reduction in the associated number 

of active links, might instead be accomplished when the eigenvalues are constrained to 

fall within a compact domain in the complex plane, as follows the former sparsification 

procedure.

Summing up, we have developed and tested a procedure to generate a network which

returns an associated Laplacian matrix with a prescribed complex spectrum. The weighted

network obtained following the above procedure is, in general, fully connected. Dedicated

sparsification strategies can be applied to remove the links which carry a small weight, and

bear a modest imprint on the ensuing Laplacian spectrum. In the following, we will consider

a specific setting of the aforementioned generation scheme, which makes it possible for the

Laplacian elements to be computed analytically.
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Figure 4. The percentage of links that are cut against the allowed perturbation δ. Blue symbols refer

to 5 independent realizations, for each value of δ. The black line goes through the average values,

computed from the collection of independent runs, at fixed δ. Here, N = 50 (Ω = 2N + 1 = 101)

and σ = 0.01.

IV. FOCUSING ON THE SPECIAL CASE U = qI

In the previous sections we described a general method to generate a Laplacian matrix

which displays a designated spectrum. The method assumes a generic matrix U , which

can be randomly assigned. In the following, we will focus on the specific case where U is

proportional to the identity matrix and progress with the analytic characterization of the

obtained Laplacian. As we shall argue in the following, working in this framework allows us

to derive a set of closed conditions for constraining the weights of the underlying network

to strictly positive values. To proceed in this direction we set:

U = qI (28)

where I stands for the identity matrix and q is scalar.
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A straightforward calculation returns the following expression for matrix S:

S =



a+ ib a− ia . . . a− ia

a− ia a+ ib
. . . a− ia

. . .
. . . . . .

...

a− ia . . . . . . a+ ib


(29)

while w is a uniform vector with identical entries equal to Na + ((N − 1)a − b)i and the

quantities d, a, b are specified by

d =
1

(2N + 1)c
(30)

a =
−1

2(2N + 1)q
(31)

b = 2Na (32)

From equations (16), (18) one can obtain a closed expression for each element of the

Laplacian, as function of the eigenvalues. The interested reader can find the detailed

computations in Appendix B. In the following the final formulae are reported.

The diagonal elements satisfy:

L11 =
2

2N + 1

N+1∑
k=2

αk (33)

Lss =
2Nαs + βs

2N + 1
s = 2, . . . , N + 1 (34)

Lss =
2Nαs − βs

2N + 1
s = N + 2, . . . , 2N + 1 , (35)

where use has been made of the identity <(Dkk) = αk. The first row and column are given
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by:

L1t =
1− 2N

1 + 2N
αt − βt +

2

2N + 1

N+1∑
k=2,k 6=t

αk t = 2, . . . , N + 1 (36)

L1t =
1− 2N

1 + 2N
αt + βt +

2

2N + 1

N+1∑
k=2,k 6=t−N

αk t = N + 2, . . . , 2N + 1 (37)

Lt1 =
−αt + βt
2N + 1

t = 2, . . . , N + 1 (38)

Lt1 =
−αt − βt
2N + 1

t = N + 2, . . . , 2N + 1 . (39)

while the remaining elements are:

Lst =
−αs + βs
2N + 1

s = 2, . . . , N + 1 and t = N + 2, . . . , 2N + 1 with t 6= s−N (40)

Lst =
−αs − βs
2N + 1

s = N + 2, . . . , 2N + 1 and t = 2, . . . , N + 2 with t 6= s−N (41)

Ls,s+N =
−αs − 2Nβs

2N + 1
s = 2, . . . , N + 1 (42)

Ls,s−N =
−αs + 2Nβs

2N + 1
s = N + 2, . . . , 2N + 1 (43)

Lst =
−αs + βs
2N + 1

t, s = 2, . . . , N + 1 and s 6= t (44)

Lst =
−αs − βs
2N + 1

s, t = N + 2, . . . , 2N + 1 and s 6= t (45)

A. Controlling the sign of non-diagonal Laplacian entries.

The Laplacian matrix obtained with the procedure illustrated above has both positive

and negative entries. Signed Laplacians are often used in consensus problems, where nega-

tive weights model antagonistic interactions. In other contexts, when e.g. the Laplacian is

stemming from diffusive interactions, non diagonal entries are constrained to positive val-

ues. In the following, we will provide a set of necessary conditions for the assigned spectrum

to eventually yield a Laplacian with positive extra diagonal elements, Lij > 0 for i 6= j.

Clearly, Lii < 0, as summing on the rows should return zero. The underlying network,
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therefore, displays positive weights, as its adjacency matrix is basically obtained from the

Laplacian matrix by replacing the diagonal elements with zeros.

Further, we will set <(Λj) = αj < 0 for j ≥ 2, an assumption which corresponds

to dealing with a stable linear system of the type given in Eq. (25). This requirement

immediately yields L11 < 0, as it follows from relation (33). We will also operate in the

setting analyzed above, i.e. assuming U = qI. The obtained expressions for the Laplacian

elements allow to recast the sought conditions on their signs as:



2Nαt < βt < −2Nαt

βt > −1−2N
2N+1αt −

2
2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

αt < βt < −αt
αt
2N < βt < − αt

2N

(46)

where the inequalities hold for t = 2, . . . , N + 1.

The above conditions can be simplified, after some algebraic manipulations, to return

4N

4N2 − 1

∑
k

αk < αt <
2

2N + 1

∑
k

αk (47)

and

αt −
2

2N + 1

∑
k

αk < βt < − αt +
2

2N + 1

∑
k

αk . (48)

The interested reader can access the detailed steps in Appendix C.

Assume that the assigned Laplacian spectrum matches the above conditions, while hav-

ing αk < 0 for k > 2. Then the Laplacian matrix obtained with the above procedure , with

U = qI, displays positive non diagonal entries.

Let us explore the consequences of conditions (47) and (48). To this end, introduce ᾱ, the

average of the non-negative real parts of the Laplacian eigenvalues, i.e. ᾱ = (
∑

k αk)/(2N).
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Figure 5. Examples of discrete spectra (red symbols) which yield a Laplacian with positive non

diagonal entries. The rectangular boxes identify the region where eigenvalue should fall for the

ensuing network to display positive weights and are traced according to the conditions derived in the

main body of the paper. Here, Ω = 2N + 1 = 21 (a), Ω = 2N + 1 = 41 (b) and Ω = 2N + 1 = 81

(c).

A straightforward analysis allows us to conclude that the generated Laplacian returns pos-

itive non-diagonal elements, if the assigned non trivial eigenvalues (i.e. Λk, with k > 1) fall

in a bounded rectangular domain of the complex plane. More specifically, the rectangular

region is symmetric, with respect to the horizontal (real) axis, and extends along the ver-

tical direction (imaginary axis) of ±2Nᾱ/(4N2 − 1). The rectangle is completed by two

vertical sides, positioned at 4N2

4N2−1 ᾱ and 2N
2N+1 ᾱ. Working at fixed N , the larger is |ᾱ| the

more extended is the rectangle along the vertical direction. Conversely, when making N

larger, the rectangle shrinks in the horizontal direction and becomes eventually degenerate

for N → ∞. In other words, for large values of N , eigenvalues should align on a vertical

segment positioned at ᾱ, and whose extension increases linearly with |ᾱ| (while decreasing

with N). This is shown in Fig. 5, where three different spectra are depicted (for different

choices of ᾱ) which yield a Laplacian with positive off-diagonal elements.

In the following section, we will apply the method of Laplacian generation here discussed

to the study of two prototypical examples of dynamical systems on networks.
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V. SELECTED APPLICATIONS

In this Section we consider two different models of interacting oscillators, defined on

a network. In both cases, the coupling between individual oscillators is implemented via

a discrete Laplacian operator, which reflects the specific network arrangement. It will be

shown that a suitable network arrangement can be a priori established, building on the

procedure illustrated above, so as to make the inspected systems stable against external

perturbations.

A. Coupled Stuart-Landau oscillators

Consider an ensemble made of 2N + 1 nonlinear oscillators and denote by Wi their

associated complex amplitude. We assume the oscillators to be mutually coupled via a

diffusive-like interaction which is mathematically modeled by a discrete Laplacian operator.

Each oscillator obeys a complex Stuart-Landau equation. The dynamics of the system can

be cast in the form:

d

dt
Wj = Wj − (1 + ic2)|Wj |2Wj + (1 + ic1)K

∑
k

LjkWk (49)

where c1 and c2 are real parameters. The index j runs from 1 to 2N + 1, the total number

of oscillators. Here, K is a suitable parameter setting the coupling strength. Without loss

of generality, in what follows it is assumed that K = 1. Lij = Aij − kiδij is the Laplacian,

Aij is the generic entry of the directed and weighted adjacency matrix A and ki =
∑

j Aij .

The system admits a homogeneous limit cycle solution in the form WLC(t) = e−ic2t. To

characterize the stability of the cycle, one can introduce a non homogeneous perturbation

in polar coordinates as:

Wi(t) = WLC [1 + ρi(t)]e
iθi(t) (50)
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By linearizing around the limit cycle solution (ρi(t) = 0, θi(t) = 0), one gets:

d

dt

ρj
θj

 =

 −2 0

−2c2 0

ρj
θj

+

 1 −c1

c1 1

∑
k

Ljk

ρk
θk

 (51)

To proceed further, expand the perturbations ρj and θj on the Laplacian eigenvectors v(α),

that is ρj
θj

 =
2N+1∑
α=1

ρ(α)
θ(α)

 eλαt(v(α))i (52)

By inserting this expansion in (51) and using the relation

∑
j

Lij(v(α))j = Λ(α)(v(α))i (53)

for α = 1, . . . , 2N + 1, we obtain a condition formally equivalent to the expression of the

continuous dispersion relation

λmax(Λ(α)) = −Λ(α) − 1 +

√
−c21

(
Λ(α)

)2 − 2c1c2Λ(α) + 1 (54)

If λRe = <(λmax) is positive for some Λ(α), the perturbation grows exponentially in time,

and the initial homogeneous state turns out to be unstable. Conversely, if λRe = <(λmax) <

0, for every Λ(α), the perturbation gets re-absorbed and the system converges back to the

fully synchronized state. The condition λRe < 0 can be further processed analytically, as

discussed in [15]. In particular, it can be shown that the latter condition is fulfilled, if the

Laplacian eigenvalues fall in a specific portion of the parameter plane, which reflects the

choice made for the reaction parameters c1, c2 and K. The region of interest is the one

enclosed between the two solid lines, displayed in Fig. 6(a) for the specific selection of the

parameters. The blue symbols depicted in Fig. 6(a) are randomly generated so as to fall in

the region of the complex plane where stability holds. They represent the spectrum of the

Laplacian that we seek to recover following the method illustrated above. In Fig. 6(b), λRe

is plotted against −ΛRe = −<(Λ), confirming the stability of the homogeneous solution.

Page 21 of 36 AUTHOR SUBMITTED MANUSCRIPT - JPCOMPX-100073.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



22

We now proceed by generating a Laplacian matrix, which is constructed so as to yield 

the spectrum depicted in Fig. 6(a), see crosses (in blue). Circles (in red) refer to the 

spectrum obtained after the sparsification. In this case we operated with the more stringent 

sparsification protocol, the second of those introduced above. This latter appears more 

suited to the case at hand because of the shape of the domain where the eigenvalues should 

eventually fall to enforce stability. As an additional condition to the algorithm, we accepted 

only the sparsification moves which prevent the eigenvalues to invade the region of 

the complex plane associated to instability.

The sparsified adjacency matrix A defines the network of interactions between coupled 

oscillators, as follows Eqs. (49). We hence integrate numerically the governing equations, 

assuming the initial state to be a perturbation of the homogenous synchronized equilibrium. 

As expected, the perturbation fades away and the system regains its unperturbed, fully 

synchronized, equilibrium.

B. Coupled Kuramoto oscillators

As a second example we set to study the Kuramoto model. Consider a system made of

2N+1 oscillators, denote by θi the phase of the i-th oscillator, and ωi its natural frequency.

The oscillators evolve as dictated by the following system of 2N + 1 coupled differential

equations:

θ̇i = ωi +
2N+1∑
j=1

Aij sin(θj − θi) i = 1, .., 2N + 1 (55)

Here, Aij stands for the entries of the adjacency matrix A which sets the interactions 

between pairs of oscillators. The matrix is, in principle, weighted, and may display positive 

and negative entries as reflecting the specific interaction (excitatory or  inhibitory) being at 

play.
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Figure 6. Panel (a): the system of coupled Landau-Stuart oscillators is stable if the eigenvalues 

of the Laplacian operator fall in the portion of the complex plane comprised between the two solid 

lines. Crosses (in blue) represent the (randomly assigned) eigenvalues of the Laplacian that we aim at 

obtaining by means of the procedure introduced in this paper. Circles (in red) refer to the spectrum 

obtained as follows the sparsification (see main body of the paper). In the sparsification procedure we 

assumed σ = 0.01 and δ = 5. The percentage of pruned links is around 35 % of the total.. Panel (b): 

λRe is plotted against −ΛRe = −<(Λ). This is an alternative way to show that the system is stable with 

the prescribed Laplacian spectrum. The solid line stands for the dispersion relation obtained in the 

continuum limit, when the discrete Laplacian is replaced by a standard differential operator. Panel 

(c): the time evolution of the real components <(Wj) is shown, with an appropriate color code. Here, 

the weighted network which specifies the coupling between the nodes is obtained from the sparsified 

Laplacian. Here, c1 = 3, c2 = 2.4224 and K = 1.

As an additional assumption, we will here focus in the simplified setting where ωi = ω

∀i. We can then introduce the new variable ψi = θi−ωt, and write the governing equation

in the equivalent form:

ψ̇i =
2N+1∑
j=1

Aij sin(ψj − ψi) i = 1, .., 2N + 1 (56)

A homogeneous solution always exists with ψi = Ψ ∀i, and for any constant Ψ ∈ [0, 2π), as

it can be immediately checked by substitution. To assess the stability of the solution, one

sets ψi = Ψ + δi, and expands (56) at the leading order in the δi. In this way, one gets:
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δ̇i =
2N+1∑
j=1

Aij(δj − δi) =
2N+1∑
j=1

Lijδj (57)

where Lij = Aij − kiδij is the Laplacian operator which stems from Aij . The stability 

of the simplified Kuramoto model h ere c onsidered i s c ontrolled by a  l inear s ystem o f the 

type introduced in (25), with the obvious replacement of xi with δi. The system proves 

hence stable if the (non trivial) eigenvalues of the Laplacian operator display negative 

real parts. Our aim, here, is to generate a Laplacian (and therefore a matrix of binary 

weighted connections among oscillators) which warrants the stability of the system. To 

this end we assign the eigenvalues (which appear in conjugate pairs) to belong to the 

negative portion of the complex plane, see (blue) crosses in Fig. 7(a). The null eigenvalue 

is clearly included into the spectrum. Running the procedure discussed in the first part of 

the paper, we obtain the corresponding Laplacian and compute the associated adjacency 

matrix. The first of the two sparsification procedures is then applied to remove unessential 

links, yielding the spectrum of the associated Laplacian depicted with (red) circles in Fig. 

7(a). The Kuramoto model (56) is then integrated numerically by assuming the recovered 

expression for A. As predicted, the system is stable to external perturbations as one can 

clearly appreciate by inspection of Fig. 7(b).

VI. CONCLUSIONS

Studying the dynamics of an ensemble made of interacting units on a network is cen-

tral for a large plethora of applications. In many cases of interests, individual units evolve

under the influence of homologous constituents, the interaction stemming in general from

binary exchanges. Distinct fundamental units are assigned to different nodes of the collec-

tion, paired via physical or virtual links. For a relevant subclass of problems, the stability

of the ensuing equilibrium can be traced back to the spectrum of the Laplacian operator,

computed from the adjacency matrix which defines the network arrangement. Symmetric
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Figure 7. Panel (a): Crosses (in blue) represent the spectrum of the Laplacian operator that we seek to 

recover. The eigenvalues are distributed in the left portion of the complex plane to assure stability of 

the inspected Kuramoto model. Circles (in red) stand for the spectrum of the Laplacian after the 

sparsification procedure. We here apply the first sparsification algorithm as discussed in the main 

body of the paper. More specifically, unessential links with modest weights are removed, while 

confining the Laplacian spectrum in a bounded domain, located in the negative portion of the complex 

plane. Here, σ = 0.01 and δ = 0.2. The percentage of trimmed links is around 9 % of the total. Panel 

(b): θi vs. time. Here, the adjacency matrix employed in the numerical integration follows the 

sparsification. As an initial condition, we perturb the homogenous solution (assumed Ψ = 0) by a 

random heterogeneous amount. After a transient, the perturbation gets absorbed and the oscillators 

evolve in unison. Here Ω = 2N + 1 = 51.

networks yield Laplacian operators with real spectrum, while directionality in the couplings

reflects in an imaginary spectrum. Methods exist which allow one to generate a symmetric

network, hence Laplacian, with a prescribed real spectrum. Starting from these premises,

we have proposed and tested a novel procedure to generate a (signed and directed) Lapla-

cian which returns an a priori assigned (complex) spectrum. A special case has also been

considered, which enables one to recover closed analytical expressions for the entries of the

sought Laplacian. Working in this setting, we can elaborate on the conditions that have

to be matched for the ensuing Laplacian to solely display positive non diagonal elements.

Dedicated sparsification procedures are also discussed to help removing unessential links
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in terms of their impact on the associated spectrum. The algorithm for Laplacian gener-

ation has been successfully tested with reference to two prototypical examples of coupled

oscillators. Taken together, our work explores possible strategies for network generation

with the emphasis placed on dynamical, rather than structural features. The dynamics is

indirectly modulated by the spectrum of the Laplacian operator, which is here constraining

the generation algorithm.
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Appendix A: On the explicit expression of S

Given two arbitrary constants α and β, the following identity holds

(I + αE)(I + βE) = I + (α+ β)E + αβE2 (A1)

for any matrix E. If E is the matrix defined in (8) one gets:

E2 = NE (A2)

and then

(I + αE)(I + βE) = I + (α+ β + αβN)E (A3)

If β = − α
1+αN , from (A3) we get

(I + αE)−1 = (I + βE) (A4)

The above result can be used to derive the structure of matrix S, as reported in the main

body of the paper. To this end, we begin by rewriting the matrices A and B as

A = [(1− i)E − iI]U = −i[I + (i+ 1)E]U (A5)

B = [(i+ 1)E + iI]U = i[I + (1− i)E]U (A6)

From (A4) we obtain

B−1 = −iU−1[I + (i+ 1)E]−1 = −iU−1
[
I +

i− 1

1 + (1− i)N
E

]
(A7)

and then, after some calculations, we get

B +AB−1A = i

[
I + (1− i)E + I +

3i+ 2iN + 1

1 + (1− i)N
E

]
U

= 2i

[
I +

1 + i

1 + (1− i)N
E

]
U
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In conclusion,

S = (B +AB−1A)−1 = − i
2
U−1

[
I − 1 + i

1 + 2N
E

]
because of [

I +
1 + i

1 + (1− i)N
E

]−1
=

[
I − 1 + i

1 + 2N
E

]
(A8)

which proves the results.

Appendix B: About the computation of Lij

The aim of this section is to detail the computations needed to obtain explicitly the

entries of the Laplace matrix L under the assumption U = qI starting thus from Eqs. (16)

and (18).

Let us begin by computing the diagonal elements of L, namely Lii for i = 1, .., N , . For

i = 1, one gets:

L11 =
N+1∑
k=2

V1kDkkWk1 (B1)

From (4) and (6) we obtain for k = 2, . . . , N + 1:

V1k = −1− i (B2)

Wk1 =
−1 + i

2(2N + 1)
(B3)

Then

L11 = 2
N+1∑
k=2

<
[
(−1− i)Dkk

−1 + i

2(2N + 1)

]
(B4)

= 2
N+1∑
k=2

<
[
Dkk(−1− i) −1 + i

2(2N + 1)

]
(B5)

=
2

2N + 1

N+1∑
k=2

αk (B6)
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where use has been made of the identity <(Dkk) = αk.

We can proceed in analogy for the others diagonal elements of the Laplacian matrix. In

particular, for s = 2, . . . , N + 1, we have that

Wss = Sss =
−2Ni− 1

2(2N + 1)
, (B7)

and then

Lss = 2

N+1∑
k=2

<[DkkVskWks] (B8)

= 2<(DssVssWss) (B9)

= 2<
[
(αs + iβs)i

−2Ni− 1

2(2N + 1)

]
(B10)

=
2Nαs + βs

2N + 1
(B11)

Conversely, for s = N + 2, . . . , 2N + 1, we have

Wss = iSss = i
−2Ni− 1

2(2N + 1)
, (B12)

and consequently:

Lss = 2<
[
(αs − iβs)i

−2Ni− 1

2(2N + 1)

]
(B13)

=
2Nαs − βs

2N + 1
(B14)

Let us proceed now with the other elements of the first row of L. For t = 2, . . . , N + 1 we
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can write

L1t = 2

N+1∑
k=2

<(V1kDkkWkt) (B15)

= 2

[
<(V1tDttWtt) +

N+1∑
k=2,k =t

<(V1kDkkWkt)

]
(B16)

= 2

{
<
[
(−1− i)(αt + iβt)

−2Ni− 1

2(2N + 1)

]
+ (B17)

N+1∑
k=2,k 6=t

<
[
(−1− i)(αk + iβk)

i− 1

2(2N + 1)

]}
(B18)

=
1− 2N

1 + 2N
αt − βt +

2

2N + 1

N+1∑
k=2,k 6=t

αk (B19)

and for t = N + 2, . . . , 2N + 1 we get

L1t = 2

{
<
[
(−1 + i)(αt − iβt)i

−2Ni− 1

2(2N + 1)

]
+ (B20)

2N+1∑
k=N+2,k 6=t

<
[
(−1 + i)(αk − iβk)i

i− 1

2(2N + 1)

]}
(B21)

=
1− 2N

1 + 2N
αt + βt +

2

2N + 1

2N+1∑
k=N+2,k 6=t

αk (B22)

=
1− 2N

1 + 2N
αt + βt +

2

2N + 1

N+1∑
k=2,k 6=t−N

αk (B23)

For s = 2, . . . , N + 1 and t = N + 2, . . . , 2N + 1 with t 6= s−N , we get:

Lst =
2N+1∑
k=2

VskDkkWkt (B24)

= VssDssWst + Vs,s+NDs+N,s+NWs+N,t (B25)

= i(αs + iβs)(−i)
−i− 1

2(2N + 1)
+ (B26)

(−i)(αs − iβs)i
i− 1

2(2N + 1)
(B27)

=
−αs + βs
2N + 1

(B28)
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while, for s = N + 2, . . . , 2N + 1 and t = 2, . . . , N + 2 with t 6= s − N , the following

expression holds:

Lst = VssDssWst + Vs,s−NDs−N,s−NWs−N,t (B29)

= (αs − iβs)
−i− 1

2(2N + 1)
+ (αs + iβs)

i− 1

2(2N + 1)
(B30)

= −αs + βs
2N + 1

(B31)

For s = 2, . . . , N + 1

Ls,s+N = (B32)

VssDssWs,s+N + Vs,s+NDs+N,s+NWs+N,s+N (B33)

= i(αs + iβs)(−i)
2Ni− 1

2(2N + 1)
+ (B34)

(−i)(αs − iβs)i
−2Ni− 1

2(2N + 1)
= (B35)

−αs + 2Nβs
2N + 1

(B36)

while, for s = N + 2, . . . , 2N + 1, we obtain:

Ls,s−N = (B37)

VssDssWs,s+N + Vs,s−NDs−N,s−NWs−N,s−N (B38)

= (αs − iβs)
2Ni− 1

2(2N + 1)
+ (αs + iβs)i

−2Ni− 1

2(2N + 1)
= (B39)

−αs − 2Nβs
2N + 1

(B40)

For t = 2, . . . , N + 1

Lt1 = 2<(VttDttWt1) = (B41)

2<
[
i(αt + iβt)

i− 1

2(2N + 1)

]
= (B42)

−αt − βt
2N + 1

(B43)
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and for t = N + 2, . . . , 2N + 1

Lt1 = 2<(VttDttWt1) (B44)

= 2<
[
(αt − iβt)

−i− 1

2(2N + 1)

]
(B45)

=
−αt − βt
2N + 1

(B46)

For t, s = 2, . . . , N + 1 and s 6= t

Lst = 2<(VssDssWst) (B47)

= 2<
[
i(αs + iβs)

i− 1

2(2N + 1)

]
(B48)

=
−αs + βs
2N + 1

(B49)

and, finally, for s, t = N + 2, . . . , 2N + 1 and s 6= t, one gets:

Lst = 2<(VssDssWst) (B50)

= 2<
[
(αs − iβs)i

i− 1

2(2N + 1)

]
= (B51)

−αs + βs
2N + 1

(B52)

Summing up, we have here provided closed-form analytical expressions for all the entries

of the Laplacian matrix, as a function of the assigned spectrum.

Appendix C: Positiveness of L

The aim of this section is to work out the algebraic steps needed to rewrite (46) in the

simpler form given by (47) and (48).
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Let us thus rewrite (46)

2Nαt < βt < −2Nαt

βt > −1−2N
2N+1αt −

2
2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

αt < βt < −αt
αt
2N < βt < − αt

2N

where the inequalities hold for t = 2, . . . , N + 1. Then the second and the third conditions

of system (46) can be matched simultaneously provided that:

αt <
2

2N − 1

∑
k 6=t

αk ∀t = 2, . . . , N + 1 (C1)

Remark that:

2Nαt < αt <
αt
2N

(C2)

holds for arbitrary values of αt < 0 and N . Hence, system (46) simplifies as follows:

αt
2N < βt < − α

2N

αt <
2

2N−1
∑

k 6=t αk

βt > −1−2N
2N+1αt −

2
2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

(C3)

for t = 2, . . . , N + 1.

Let us now focus on the conditions for βt. We assume that the following condition holds:

1− 2N

2N + 1
αt +

2

2N + 1

N+1∑
k=2,k 6=t

αk > −
αt
2N

(C4)

and we set to explore its consequences. Eq. (C4) yields:

αt <
4N

4N2 − 4N − 1

∑
k 6=t

αk =
1

N − 1− 1
4N

∑
k 6=t

αk (C5)
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For N > 1, conditions (C3) maps therefore in the following equivalent system:
αt
2N < βt < − αt

2N

αt <
2

2N−1
∑N+1

k=2,k 6=t αk

αt <
1

N−1− 1
4N

∑
k 6=t αk

(C6)

Remark that:

1

N − 1− 1
4N

N+1∑
k=2,k 6=t

αk <
2

2N − 1

N+1∑
k=2,k 6=t

αk (C7)

due to the inequality

1

N − 1− 1
4N

>
2

2N − 1
(C8)

which holds for each N > 1. Hence, system (C6) takes the form:
αt
2N < βt < − αt

2N

αt <
1

N−1− 1
4N

∑
k 6=t αk

(C9)

Then, (C9) has no solutions, under the working hypothesis that we have put forward to

deriving it. In fact:

αt +
1

N − 1− 1
4N

αt <
1

N − 1− 1
4N

∑
k

αk (C10)

that is

αt <
1

N − 1
4N

∑
k

αk =
4N

4N2 − 1

∑
k

αk (C11)

and summing on every t we get ∑
t

αt <
4N2

4N2 − 1

∑
k

αk (C12)

which, in turn, implies 4N2

4N2−1 < 1, a condition that is obviously never met. We now go

back to revise ansatz (C4), and consider the alternative scenario:

1− 2N

2N + 1
αt +

2

2N + 1

N+1∑
k=2,k 6=t

αk < −
αt
2N

(C13)
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Then, (C3) becomes 

βt > −1−2N
2N+1αt −

2
2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

αt <
2

2N−1
∑N+1

k=2,k 6=t αk

αt >
1

N−1− 1
4N

∑
k 6=t αk

(C14)

Following a path analogous to the one discussed above, we get:

4N

4N2 − 1

∑
k

αk < αt <
2

2N + 1

∑
k

αk (C15)

and

αt −
2

2N + 1

∑
k

αk < βt < − αt +
2

2N + 1

∑
k

αk (C16)
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