1,728 research outputs found
Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes
We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM). The single-layer BM of Guswa et al. (2002) is employed, whereas the Richards equation (RE) based Soil Water Atmosphere Plant (SWAP) model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days) where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002). Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are dormant, reflecting that soil, it being of coarser or finer texture, can be preferentially in either wetter or drier states over this period
The spatiotemporal organization of cerebellar network activity resolved by two-photon imaging of multiple single neurons
In order to investigate the spatiotemporal organization of neuronal activity in local microcircuits, techniques allowing the simultaneous recording from multiple single neurons are required. To this end, we implemented an advanced spatial-light modulator two-photon microscope (SLM-2PM). A critical issue for cerebellar theory is the organization of granular layer activity in the cerebellum, which has been predicted by single-cell recordings and computational models. With SLM-2PM, calcium signals could be recorded from different network elements in acute cerebellar slices including granule cells (GrCs), Purkinje cells (PCs) and molecular layer interneurons. By combining WCRs with SLM-2PM, the spike/calcium relationship in GrCs and PCs could be extrapolated toward the detection of single spikes. The SLM-2PM technique made it possible to monitor activity of over tens to hundreds neurons simultaneously. GrC activity depended on the number of spikes in the input mossy fiber bursts. PC and molecular layer interneuron activity paralleled that in the underlying GrC population revealing the spread of activity through the cerebellar cortical network. Moreover, circuit activity was increased by the GABA-A receptor blocker, gabazine, and reduced by the AMPA and NMDA receptor blockers, NBQX and APV. The SLM-2PM analysis of spatiotemporal patterns lent experimental support to the time-window and center-surround organizing principles of the granular layer
Control methods for Dermanyssus gallinae in systems for laying hens: results of an international seminar
This paper reports the results of a seminar on poultry red mite (PRM), Dermanyssus gallinae. Eighteen researchers from eight European countries discussed life cycle issues of the mite, effects of mites on hens and egg production, and monitoring and control methods for PRM in poultry facilities. It was determined that PRM probably causes more damage than envisaged, with the cost in The Netherlands alone reaching 11 million euro per annum. However a great deal is still unknown about PRM (e.g. reproduction, survival methods, etc.) and that PRM monitoring is an important instrument in recognising and admitting the problem and in taking timely measures. Currently, the most promising control method combines heating the hen house in combination with chemical treatments. Future areas of development which show promise include the use of entomopathogenic fungi, vaccination and predatory mites. The final aim is to solve the problem of D. gallinae in housing systems for laying hens
Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments
Diesel particulate matter (DPM) is a significant source of aerosol in urban
areas and has been linked to adverse health effects. Although newer European
directives have introduced increasingly stringent standards for primary PM
emissions, gaseous organics emitted from diesel cars can still lead to large
amounts of secondary organic aerosol (SOA) in the atmosphere. Here we
present results from smog chamber investigations characterizing the primary
organic aerosol (POA) and the corresponding SOA formation at atmospherically
relevant concentrations for three in-use diesel vehicles with different
exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment
devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and
the third vehicle used both a DOC and diesel particulate filter (DPF). The
experiments presented here were obtained from the vehicles at conditions
representative of idle mode, and for one car in addition at a speed of 60 km/h.
An Aerodyne high-resolution time-of-flight aerosol mass spectrometer
(HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and
to obtain information on the chemical composition. For the conditions
explored in this paper, primary aerosols from vehicles without a particulate
filter consisted mainly of black carbon (BC) with a low fraction of organic
matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation
resulted in a consistent production of SOA only for the vehicles without a
DOC and with a deactivated DOC. After 5 h of aging ~80% of the
total organic aerosol was on average secondary and the estimated "emission
factor" for SOA was 0.23–0.56 g/kg fuel burned. In presence of both a DOC
and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h
after lights on. The mass spectra indicate that POA was mostly a
non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from
0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C
range of 0.21 to 0.37
Net neutrality discourses: comparing advocacy and regulatory arguments in the United States and the United Kingdom
Telecommunications policy issues rarely make news, much less mobilize thousands of people. Yet this has been occurring in the United States around efforts to introduce "Net neutrality" regulation. A similar grassroots mobilization has not developed in the United Kingdom or elsewhere in Europe. We develop a comparative analysis of U.S. and UK Net neutrality debates with an eye toward identifying the arguments for and against regulation, how those arguments differ between the countries, and what the implications of those differences are for the Internet. Drawing on mass media, advocacy, and regulatory discourses, we find that local regulatory precedents as well as cultural factors contribute to both agenda setting and framing of Net neutrality. The differences between national discourses provide a way to understand both the structural differences between regulatory cultures and the substantive differences between policy interpretations, both of which must be reconciled for the Internet to continue to thrive as a global medium
Net neutrality discourses: comparing advocacy and regulatory arguments in the United States and the United Kingdom
Telecommunications policy issues rarely make news, much less mobilize thousands of people. Yet this has been occurring in the United States around efforts to introduce "Net neutrality" regulation. A similar grassroots mobilization has not developed in the United Kingdom or elsewhere in Europe. We develop a comparative analysis of U.S. and UK Net neutrality debates with an eye toward identifying the arguments for and against regulation, how those arguments differ between the countries, and what the implications of those differences are for the Internet. Drawing on mass media, advocacy, and regulatory discourses, we find that local regulatory precedents as well as cultural factors contribute to both agenda setting and framing of Net neutrality. The differences between national discourses provide a way to understand both the structural differences between regulatory cultures and the substantive differences between policy interpretations, both of which must be reconciled for the Internet to continue to thrive as a global medium
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
Biogenesis of mitochondrial porin
We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance
Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer
A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1&plusmn;1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO<sub>2</sub> emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C<sub>2</sub>H<sub>4</sub>O<sub>2</sub><sup>+</sup> at mass to charge ratio <i>m/z</i> 60, a commonly used marker for primary emissions of wood burning. This contribution at <i>m/z</i> 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19&minus;0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at <i>m/z</i> 43 (<i>f</i> 43) to the total organic mass spectrum. The non-oxidized fragment C<sub>3</sub>H<sub>7</sub><sup>+</sup> has a considerable contribution at <i>m/z</i> 43 for the fresh OA with an increasing contribution of the oxygenated ion C<sub>2</sub>H<sub>3</sub>O<sup>+</sup> during aging. After five hours of aging, the OA has a rather low C<sub>2</sub>H<sub>3</sub>O<sup>+</sup> signal for a given CO<sub>2</sub><sup>+</sup> fraction, possibly indicating a higher ratio of acid to non-acid oxygenated compounds in wood burning OA compared to other oxygenated organic aerosol (OOA)
Hsp70 in mitochondrial biogenesis
The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix
- …
