83 research outputs found

    Role of bone-anabolic agents in the treatment of breast cancer bone metastases

    Get PDF
    Skeletal metastases are an incurable complication afflicting the majority of patients who die from advanced breast cancer. They are most often osteolytic, characterized by net bone destruction and suppressed new bone formation. Life expectancy from first diagnosis of breast cancer bone metastases is several years, during which time skeletal-related events - including pain, fracture, hypercalcemia, and spinal cord compression - significantly degrade quality of life. The bone marrow niche can also confer hormonal and chemo-resistance. Most treatments for skeletal metastases target bone-destroying osteoclasts and are palliative. Recent results from the Breast cancer trials of Oral Everolimus-2 trial suggest that agents such as the mammalian target of rapamycin inhibitor everolimus may have efficacy against breast cancer bone metastases in part via stimulating osteoblasts as well as by inhibiting tumor growth. Selective estrogen receptor modulators similarly inhibit growth of estrogen receptor-positive breast cancers while having positive effects on the skeleton. This review discusses the future role of bone-anabolic agents for the specific treatment of osteolytic breast cancer metastases. Agents with both anti-tumor and bone-anabolic actions have been tested in the setting of multiple myeloma, a hematological malignancy that causes severe osteolytic bone loss and suppression of osteoblastic new bone formation. Stimulation of osteoblast activity inhibits multiple myeloma growth - a strategy that might decrease breast cancer burden in osteolytic bone metastases. Proteasome inhibitors (bortezomib and carfilzomib) inhibit the growth of myeloma directly and are anabolic for bone. Drugs with limited anti-tumor activity but which are anabolic for bone include intermittent parathyroid hormone and antibodies that neutralize the WNT inhibitors DKK1 and sclerostin, as well as the activin A blocker sotatercept and the osteoporosis drug strontium ranelate. Transforming growth factor-beta inhibitors have little tumor antiproliferative activity but block breast cancer production of osteolytic factors and are also anabolic for bone. Some of these treatments are already in clinical trials. This review provides an overview of agents with bone-anabolic properties, which may have utility in the treatment of breast cancer metastatic to the skeleton

    The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis

    Get PDF
    Semaphorin 4D (Sema4D; CD100) is a transmembrane homodimer 150-kDa glycoprotein member of the Semaphorin family. Semaphorins were first identified as chemorepellants that guide neural axon growth. Sema4D also possesses immune regulatory activity. Recent data suggest other Sema4D functions: inactivation of platelets, stimulation of angiogenesis, and regulation of bone formation. Sema4D is a coupling factor expressed on osteoclasts that inhibits osteoblast differentiation. Blocking Sema4D may, therefore, be anabolic for bone. Sema4D and its receptor Plexin-B1 are commonly dysregulated in cancers, suggesting roles in cancer progression, invasion, tumor angiogenesis, and skeletal metastasis. This review focuses on Sema4D in bone and cancer biology and the molecular pathways involved, particularly Sema4D-Plexin-B1 signaling crosstalk between cancer cells and the bone marrow microenvironment-pertinent areas since a humanized Sema4D-neutralizing antibody is now in early phase clinical trials in cancers and neurological disorders

    Small molecules inhibit ex vivo tumor growth in bone

    Get PDF
    Bone is a common site of metastasis for breast, prostate, lung, kidney and other cancers. Bone metastases are incurable, and substantially reduce patient quality of life. To date, there exists no small-molecule therapeutic agent that can reduce tumor burden in bone. This is partly attributed to the lack of suitable in vitro assays that are good models of tumor growth in bone. Here, we take advantage of a novel ex vivo model of bone colonization to report a series of pyrrolopyrazolone small molecules that inhibit cancer cell invasion and ex vivo tumor growth in bone at single-digit micromolar concentration. We find that the compounds modulated the expression levels of genes associated with bone-forming osteoblasts, bone-destroying osteoclasts, cancer cell viability and metastasis. Our compounds provide chemical tools to uncover novel targets and pathways associated with bone metastasis, as well as for the development of compounds to prevent and reverse bone tumor growth in vivo

    Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma

    Get PDF
    In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma

    FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

    Get PDF
    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone

    Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis

    Get PDF
    More efficient therapies that target multiple molecular mechanisms are needed for the treatment of incurable bone metastases. Halofuginone is a plant alkaloid-derivative with antiangiogenic and antiproliferative effects. Here we demonstrate that halofuginone is an effective therapy for the treatment of bone metastases, through multiple actions that include inhibition of TGFβ and BMP-signaling., Halofuginone blocked TGF-β-signaling in MDA-MB-231 and PC3 cells showed by inhibition of TGF-β–induced Smad-reporter, phosphorylation of Smad-proteins, and expression of TGF-β-regulated metastatic genes. Halofuginone increased inhibitory Smad7-mRNA and reduced TGF-β-receptor II protein. Proline supplementation but not Smad7-knockdown reversed halofuginone-inhibition of TGF-β-signaling. Halofuginone also decreased BMP-signaling. Treatment of MDA-MB-231 and PC3 cells with halofuginone reduced the BMP-Smad-reporter (BRE)4, Smad1/5/8-phosphorylation and mRNA of the BMP-regulated gene Id-1. Halofuginone decreased immunostaining of phospho-Smad2/3 and phospho-Smad1/5/8 in cancer cells in vivo., Furthermore, halofuginone decreased tumor-take and growth of orthotopic-tumors. Mice with breast or prostate bone metastases treated with halofuginone had significantly less osteolysis than control mice. Combined treatment with halofuginone and zoledronic-acid significantly reduced osteolytic area more than either treatment alone. Thus, halofuginone reduces breast and prostate cancer bone metastases in mice and combined with treatment currently approved by the FDA is an effective treatment for this devastating complication of breast and prostate-cancer

    Tumor-expressed adrenomedullin accelerates breast cancer bone metastasis

    Get PDF
    INTRODUCTION: Adrenomedullin (AM) is secreted by breast cancer cells and increased by hypoxia. It is a multifunctional peptide that stimulates angiogenesis and proliferation. The peptide is also a potent paracrine stimulator of osteoblasts and bone formation, suggesting a role in skeletal metastases-a major site of treatment-refractory tumor growth in patients with advanced disease. METHODS: The role of adrenomedullin in bone metastases was tested by stable overexpression in MDA-MB-231 breast cancer cells, which cause osteolytic bone metastases in a standard animal model. Cells with fivefold increased expression of AM were characterized in vitro, inoculated into immunodeficient mice and compared for their ability to form bone metastases versus control subclones. Bone destruction was monitored by X-ray, and tumor burden and osteoclast numbers were determined by quantitative histomorphometry. The effects of AM overexpression on tumor growth and angiogenesis in the mammary fat pad were determined. The effects of AM peptide on osteoclast-like multinucleated cell formation were tested in vitro. A small-molecule AM antagonist was tested for its effects on AM-stimulated ex vivo bone cell cultures and co-cultures with tumor cells, where responses of tumor and bone were distinguished by species-specific real-time PCR. RESULTS: Overexpression of AM mRNA did not alter cell proliferation in vitro, expression of tumor-secreted factors or cell cycle progression. AM-overexpressing cells caused osteolytic bone metastases to develop more rapidly, which was accompanied by decreased survival. In the mammary fat pad, tumors grew more rapidly with unchanged blood vessel formation. Tumor growth in the bone was also more rapid, and osteoclasts were increased. AM peptide potently stimulated bone cultures ex vivo; responses that were blocked by small-molecule adrenomedullin antagonists in the absence of cellular toxicity. Antagonist treatment dramatically suppressed tumor growth in bone and decreased markers of osteoclast activity. CONCLUSIONS: The results identify AM as a target for therapeutic intervention against bone metastases. Adrenomedullin potentiates osteolytic responses in bone to metastatic breast cancer cells. Small-molecule antagonists can effectively block bone-mediated responses to tumor-secreted adrenomedullin, and such agents warrant development for testing in vivo

    Halofuginone inhibits the establishment and progression of melanoma bone metastases

    Get PDF
    Transforming growth factor (TGF-β) derived from bone fuels melanoma bone metastases by inducing tumor secretion of pro-metastatic factors that act on bone cells to change the skeletal microenvironment. Halofuginone is a plant alkaloid derivative that blocks TGF-β signaling with antiangiogenic and antiproliferative properties. Here, we demonstrate for the first time that halofuginone therapy decreases development and progression of bone metastasis caused by melanoma cells through inhibition of TGF-β signaling. Halofuginone treatment of human melanoma cells inhibited cell proliferation, phosphorylation of SMAD proteins in response to TGF-β, and TGF-β-induced SMAD-driven transcription. In addition, halofuginone reduced expression of TGF-β target genes that enhance bone metastases, including PTHrP, CTGF, CXCR4, and IL11. Also, cell apoptosis was increased in response to halofuginone. In nude mice inoculated with 1205Lu melanoma cells, a preventive protocol with halofuginone inhibited bone metastasis. The beneficial effects of halofuginone treatment were comparable to those observed with other anti-TGF-β strategies, including systemic administration of SD208, a small molecule inhibitor of TGF-β receptor I kinase, or forced overexpression of Smad7, a negative regulator of TGF-β signaling. Furthermore, mice with established bone metastases treated with halofuginone had significantly less osteolysis than mice receiving placebo assessed by radiographys. Thus, halofuginone is also effective in reducing the progression of melanoma bone metastases. Moreover, halofuginone treatment reduced melanoma metastasis to the brain, showing the potential of this novel treatment against cancer metastasis

    ROLE OF CD166 IN MULTIPLE MYELOMA CELL HOMING TO THE BONE MARROW MICROENVIRONMENT AND DISEASE PROGRESSION

    Get PDF
    poster abstractMultiple myeloma (MM) is a plasma cell malignancy characterized by multiple lytic lesions throughout the skeleton, suggesting that trafficking of MM cells from the bone marrow (BM) and lodgment of these cells at secondary sites is important in disease progression. CD38+CD138- MM cells were previously characterized as putative MM stem cells (MMSC, Cancer Res. 2008; 68(1):190-7.). We analyzed CD38+CD138- cells contained within the MM cell line H929 and determined that a fraction of these cells (29.9%±1.4%) expresses CD166. CD166 is a member of the immunoglobulin superfamily capable of mediating both homophilic and heterophilic (CD6) interactions and has been shown to enhance metastasis and invasion in several tumors including breast cancer and melanoma. Studies from our laboratory suggest that CD38+CD138-CD166+ MM cells possess many functional properties commonly associated with MMSC including cell cycle quiescence, maintenance and propagation of daughter cells on a stromal substrate and gene expression profile. We hypothesized that CD166 promotes MM cell trafficking to the BM and is critical for disease progression. To test this hypothesis, H929-GFP myeloma cells were injected intravenously into NSG mice and GFP cells were recovered from the BM 14hr later. While only 3.3%±1.5% of total H929-GFP cells express the CD38+CD138- phenotype, the frequency of CD38+CD138- cells contained in BM-homed H929-GFP cells was significantly higher (53.4%±3.7%, n=3, p<0.01), suggesting a preferential homing of MMSC to the marrow microenvironment. Interestingly, whereas only 29.9%±1.4% of CD38+CD138- cells expressed CD166 prior to injection, 84.1%±10.8% of BM-homed H929-GFP CD38+CD138- cells expressed CD166 (n=3, p<0.01), suggesting that CD166 plays a critical role in directing homing of MM cells to the BM. Next, CD166 expression on H929-GFP cells was knocked down (KD) with shRNA in order to examine if reduced CD166 expression inhibit the homing of MM cells to the BM. The number of BM-homed GFP cells was significantly decreased for CD166KD cells (5658±904, n=6) compared to mock control (8551±848, n=6; p<0.05). Interestingly, cells in which suppression of CD166 expression was not achieved with shRNA homed preferentially to the BM (4.3%±0.3% CD166+cells in CD166 KD H929-GFP before injection versus 29.3%±3.6% in BM-homed GFP cells). Then we compared the progression of MM in NSG mice initiated with mock control or CD166 KD H929-GFP cells. Disease progression in mice receiving control cells was more rapid compared to that in mice receiving CD166KD cells as evidenced by serum levels of human IgA (kappa) at 4 weeks posttransplantation (240.5±67.1ng/ml versus 45.1±33.0ng/ml, n=3; p<0.05). We next examined the potential role of CD166 in osteolytic lesions using a novel Ex Vivo Organ Culture Assay (EVOCA) in which MM cells are co-cultured over calvariae from 10d-old pups for 7 days creating an in vitro 3D system for the interaction of MM cells with bone microenvironment. Data from EVOCA with H929 cells showed that bone osteolytic lesions are substantially reduced when CD166 is absent on either MM (CD166- fraction) or osteoblast lineage cells (calvariae from CD166-/- mice). Furthermore, co-culturing CD166+ or CD166- H929 cells with bone marrow stromal cells (BMSC) from WT or CD166-/- mice revealed that mRNA levels of receptor activator of NF-κB ligand (RANKL) are decreased when CD166 is absent on either MM or stromal cells while mRNA levels of osteoprotegerin (OPG), an important inhibitor of osteoclastogenesis, are not altered. This resulted in decreased RANKL/OPG ratios in cultures containing a CD166- component suggesting reduced MM-induced osteoclastogenesis in the absence of CD166. Interestingly, levels of M-CSF and IL-6 were similar in all these cultures suggesting that loss of CD166 may mediate suppression of osteolytic lesions through the downregulation of RANKL. Together, these results suggest that CD166 plays an important role in homing and retention of MM cells in the BM and promotes MM disease progression as well as bone-lytic disease and that CD166 may serve as a therapeutic target in the treatment of MM

    Hypoxia and TGF-β Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Get PDF
    BACKGROUND: Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- beta. We asked whether hypoxia (via HIF-1alpha) and TGF-beta signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed interactions between HIF-1alpha and TGF-beta pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-beta and hypoxia, with effects on the proximal promoters. We inhibited HIF-1alpha and TGF-beta pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. CONCLUSIONS/SIGNIFICANCE: Hypoxia and TGF-beta signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1alpha and TGF-beta may improve treatment of bone metastases and increase survival
    • …
    corecore