4 research outputs found

    Mutually Exclusive Formation of G‑Quadruplex and i‑Motif Is a General Phenomenon Governed by Steric Hindrance in Duplex DNA

    No full text
    G-Quadruplex and i-motif are tetraplex structures that may form in opposite strands at the same location of a duplex DNA. Recent discoveries have indicated that the two tetraplex structures can have conflicting biological activities, which poses a challenge for cells to coordinate. Here, by performing innovative population analysis on mechanical unfolding profiles of tetraplex structures in double-stranded DNA, we found that formations of G-quadruplex and i-motif in the two complementary strands are mutually exclusive in a variety of DNA templates, which include human telomere and promoter fragments of hINS and hTERT genes. To explain this behavior, we placed G-quadruplex- and i-motif-hosting sequences in an offset fashion in the two complementary telomeric DNA strands. We found simultaneous formation of the G-quadruplex and i-motif in opposite strands, suggesting that mutual exclusivity between the two tetraplexes is controlled by steric hindrance. This conclusion was corroborated in the BCL-2 promoter sequence, in which simultaneous formation of two tetraplexes was observed due to possible offset arrangements between G-quadruplex and i-motif in opposite strands. The mutual exclusivity revealed here sets a molecular basis for cells to efficiently coordinate opposite biological activities of G-quadruplex and i-motif at the same dsDNA location

    Controlled Particle Collision Leads to Direct Observation of Docking and Fusion of Lipid Droplets in an Optical Trap

    No full text
    As an intracellular organelle, phospholipid-coated lipid droplets have shown increasing importance due to their expanding biological functions other than the lipid storage. The growing biological significance necessitates a close scrutiny on lipid droplets, which have been proposed to mature in a cell through processes such as fusion. Unlike phospholipid vesicles that are well-known to fuse through docking and hemifusion steps, little is known on the fusion of lipid droplets. Herein, we used laser tweezers to capture two micrometer-sized 1,2,3-trioleoylglycerol (triolein) droplets coated with 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phosphocholine (POPC) that closely resemble intracellular lipid droplets. We started the fusion processes by a well-controlled collision between the two lipid droplets in phosphate buffer at pH 7.4. By monitoring the change in the pathway of a trapping laser that captures the collided lipid droplets, docking and physical fusion events were clearly distinguished for the first time and their lifetimes were determined with a resolution of 10 μs after postsynchronization analysis. Our method revealed that the rate-limiting docking process is affected by anions according to a Hofmeister series, which sheds light on the important role of interfacial water shedding during the process. During the physical fusion, the kinetics between bare triolein droplets is faster than lipid droplets, suggesting that breaking of phospholipid coating is involved in the process. This scenario was further supported by direct observation of a short-lived hemifusion state with ∼46 ms lifetime in POPC-coated lipid droplets, but not in bare triolein droplets

    Long-Loop G‑Quadruplexes Are Misfolded Population Minorities with Fast Transition Kinetics in Human Telomeric Sequences

    No full text
    Single-stranded guanine (G)-rich sequences at the 3′ end of human telomeres provide ample opportunities for physiologically relevant structures, such as G-quadruplexes, to form and interconvert. Population equilibrium in this long sequence is expected to be intricate and beyond the resolution of ensemble-average techniques, such as circular dichroism, NMR, or X-ray crystallography. By combining a force-jump method at the single-molecular level and a statistical population deconvolution at the sub-nanometer resolution, we reveal a complex population network with unprecedented transition dynamics in human telomeric sequences that contain four to eight TTAGGG repeats. Our kinetic data firmly establish that G-triplexes are intermediates to G-quadruplexes while long-loop G-quadruplexes are misfolded population minorities whose formation and disassembly are faster than G-triplexes or regular G-quadruplexes. The existence of misfolded DNA supports the emerging view that structural and kinetic complexities of DNA can rival those of RNA or proteins. While G-quadruplexes are the most prevalent species in all the sequences studied, the abundance of a misfolded G-quadruplex in a particular telomeric sequence decreases with an increase in the loop length or the number of long-loops in the structure. These population patterns support the prediction that in the full-length 3′ overhang of human telomeres, G-quadruplexes with shortest TTA loops would be the most dominant species, which justifies the modeling role of regular G-quadruplexes in the investigation of telomeric structures

    Direct Quantification of Loop Interaction and π–π Stacking for G‑Quadruplex Stability at the Submolecular Level

    No full text
    The well-demonstrated biological functions of DNA G-quadruplex inside cells call for small molecules that can modulate these activities by interacting with G-quadruplexes. However, the paucity of the understanding of the G-quadruplex stability contributed from submolecular elements, such as loops and tetraguanine (G) planes (or G-quartets), has hindered the development of small-molecule binders. Assisted by click chemistry, herein, we attached pulling handles via two modified guanines in each of the three G-quartets in human telomeric G-quadruplex. Mechanical unfolding using these handles revealed that the loop interaction contributed more to the G-quadruplex stability than the stacking of G-quartets. This result was further confirmed by the binding of stacking ligands, such as telomestatin derivatives, which led to similar mechanical stability for all three G-quartets by significant reduction of loop interactions for the top and bottom G-quartets. The direct comparison of loop interaction and G-quartet stacking in G-quadruplex provides unprecedented insights for the design of more efficient G-quadruplex-interacting molecules. Compared to traditional experiments, in which mutations are employed to elucidate the roles of specific residues in a biological molecule, our submolecular dissection offers a complementary approach to evaluate individual domains inside a molecule with fewer disturbances to the native structure
    corecore