192 research outputs found

    24^{24}Mg(pp, α\alpha)21^{21}Na reaction study for spectroscopy of 21^{21}Na

    Full text link
    The 24^{24}Mg(pp, α\alpha)21^{21}Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in 21^{21}Na for the astrophysically important 17^{17}F(α,p\alpha, p)20^{20}Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched 24^{24}Mg solid targets were used. Recoiling 4^{4}He particles from the 24^{24}Mg(pp, α\alpha)21^{21}Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4^{4}He particles over a range of angles simultaneously. A new level at 6661 ±\pm 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21^{21}Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.Comment: 11 pages, 6 figures, proceedings of the 18th International Conference on Accelerators and Beam Utilization (ICABU2014

    Direct reaction measurements with a 132Sn radioactive ion beam

    Full text link
    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one neutron states beyond the benchmark doubly-magic nucleus 208Pb.Comment: 22 pages, 7 figure

    Reactions of a Be-10 beam on proton and deuteron targets

    Get PDF
    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure

    Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies

    Get PDF
    Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.Comment: 9 pages, 4 figures, presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Polan

    New γ\gamma-ray Transitions Observed in 19^{19}Ne with Implications for the 15^{15}O(α\alpha,γ\gamma)19^{19}Ne Reaction Rate

    Get PDF
    The 15^{15}O(α\alpha,γ\gamma)19^{19}Ne reaction is responsible for breakout from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of resonances between Ex=4E_x = 4 and 5 MeV in 19^{19}Ne is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2−^- and 7/2−^-, respectively. Gamma-ray transitions from these states were studied using triton-γ\gamma-γ\gamma coincidences from the 19^{19}F(3^{3}He,tγt\gamma)19^{19}Ne reaction measured with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the JπJ^\pi values are actually 7/2−^- and 9/2−^-, respectively. These assignments are consistent with the values in the 19^{19}F mirror nucleus and in contrast to previously accepted assignments

    Key 19^{19}Ne states identified affecting γ\gamma-ray emission from 18^{18}F in novae

    Get PDF
    Detection of nuclear-decay γ\gamma rays provides a sensitive thermometer of nova nucleosynthesis. The most intense γ\gamma-ray flux is thought to be annihilation radiation from the β+\beta^+ decay of 18^{18}F, which is destroyed prior to decay by the 18^{18}F(pp,α\alpha)15^{15}O reaction. Estimates of 18^{18}F production had been uncertain, however, because key near-threshold levels in the compound nucleus, 19^{19}Ne, had yet to be identified. This Letter reports the first measurement of the 19^{19}F(3^{3}He,tγt\gamma)19^{19}Ne reaction, in which the placement of two long-sought 3/2+^+ levels is suggested via triton-γ\gamma-γ\gamma coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of 1.5−171.5-17 at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.Comment: 6 pages, 4 figure

    Levels in N 12 via the N 14 (p, t) reaction using the JENSA gas-jet target

    Get PDF
    As one of a series of physics cases to demonstrate the unique benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas-jet target for enabling next-generation transfer reaction studies, the N14 (p, t)N12 reaction was studied for the first time, using a pure jet of nitrogen, in an attempt to resolve conflicting information on the structure of N12. A potentially new level at 4.561-MeV excitation energy in N12 was found

    The magic nature of 132Sn explored through the single-particle states of 133Sn

    Full text link
    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table

    Online Bayesian Optimization for a Recoil Mass Separator

    Full text link
    The SEparator for CApture Reactions (SECAR) is a next-generation recoil separator system at the Facility for Rare Isotope Beams (FRIB) designed for the direct measurement of capture reactions on unstable nuclei in inverse kinematics. To maximize the performance of this system, stringent requirements on the beam alignment to the central beam axis and on the ion-optical settings need to be achieved. These can be difficult to attain through manual tuning by human operators without potentially leaving the system in a sub-optimal and irreproducible state. In this work, we present the first development of online Bayesian optimization with a Gaussian process model to tune an ion beam through a nuclear astrophysics recoil separator. We show that this method achieves small incoming angular deviations (\textless 1 mrad) in an efficient and reproducible manner that is at least three times faster than standard hand-tuning. Additionally, we present a Bayesian method for experimental optimization of the ion optics, and show that it validates the nominal theoretical ion-optical settings of the device, and improves the mass separation by 32\% for some beams
    • …
    corecore