30 research outputs found

    Metamorphism in the eastern Lac Seul region of the English River subprovince, Ontario

    Get PDF
    The English River subprovince of the Superior Province, Canada, is a linear, east-west trending high-grade metamorphic belt which extends from Lake Winnipeg in the west, to the James Bay lowlands in the east. It is composed of two prominent lithologic domains: a northern sedimentary gneiss-migmatite domain, and a southern plutonic domain. The northern domain consists primarily of alternating migmatized layers of garnet-biotite wacke and garnet-cordierite-biotite pelitic metasediments. The southern domain is composed mainly of intermediate granitic to trondhjemitic plutons. Bordering to the north and south are the lower grade Uchi and Wabigoon greenstone belts. Metamorphism and migmatization occurred during the Kenoran orogeny approximately 2.68 B.Y. ago. By conducting a detailed geothermometry-geobarometry study, patterns of metamorphism were detected which further develop our understanding of the processes operating on the earth at this very early time in its history. Results from the application of geobarometers have shown that the pressures attained during metamorphism were constant throughout the 2 15000 Km eastern Lac Seul region of the English River subprovince (5 +/- 1 Kbar). There is strong evidence from garnet-orthopyroxene barometry that pressures may have been constant over the rest of the subprovince as well. Temperatures attained during metamorphism show a trend across the subprovince, depicting a thermal anticline whose axis runs approximately east-west parallel to the strike of the subprovince. Temperatures ranged from 6oo0 c at the contact with the Uchi greenstone belt, 675°c for the garnet-cordierite in isograd, 700°c for the orthopyroxene in isograd, with maximum temperatures of around 750°c at the center of the subprovince. Langford and Morin (1976), noting the similarity of the Superior Province to the Canadian Cordillera, propose a model of accreting island arcs for the Superior Province. The strong contrasts in lithologies and structure between the northern sedimentary and southern plutonic domains suggest that the southern domain could be an allochthonous terrain accreted onto the northern domain. Since geobarometry has shown that the sediments were buried to a depth of at least 20 kms, it is postulated that the southern domain was thrust onto the sediments. Erosion has cut obliquely through the thrust plane resulting in metasediments exposed in the north, and plutonics to the south. The temperatures attained in the English River subprovince are several hundred degrees greater than can be explained by conductive heating alone. The contribution of a convective magmatic heat component must be invoked to explain the high temperatures. Block faulting and uplift with a magmatic heat source at the center of the block, combined with thermal diffusivity, explains both the high temperatures, and the thermal anticline of the English River subprovince

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions

    The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    Get PDF
    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60degC in the presence of water. Given estimated geothermal gradients on Mars temperatures <60 degC might still be consistent with (but do not require) moderate burial. However, our ability to identify interstratified minerals is greatly limited by the lack of access to traditional treatments methods used in the lab (e.g., ethylene glycol solvation). Our preferred explanation for the origin of trioctahedral smectites in Sheepbed mudstone is in situ production via reaction of olivine, water and Si-bearing amorphous material, an important mudstone component detected by XRD. Elevated levels of magnetite in the Sheepbed and the trioctahedral monomineralic nature of the clay minerals support this model. These observations, combined with previous studies of olivine stability, support the persistence of circum-neutral hydrous conditions for thousands of years at YKB

    Silicic volcanism on Mars evidenced by tridymite in high-SiO_2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a low-pressure, high-temperature (>870 °C) SiO_2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∌40 wt.% crystalline and ∌60 wt.% X-ray amorphous material and a bulk composition with ∌74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∌17 wt.% of bulk sample), tridymite (∌14 wt.%), sanidine (∌3 wt.%), cation-deficient magnetite (∌3 wt.%), cristobalite (∌2 wt.%), and anhydrite (∌1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∌39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO_2 and Fe_2O_3T oxides (∌5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill

    Manganese-Iron Phosphate Nodules at the Groken Site, Gale Crater, Mars

    Get PDF
    The MSL Curiosity rover investigated dark, Mn-P-enriched nodules in shallow lacustrine/fluvial sediments at the Groken site in Glen Torridon, Gale Crater, Mars. Applying all relevant information from the rover, the nodules are interpreted as pseudomorphs after original crystals of vivianite, (Fe2+,Mn2+)3(PO4)2·8H2O, that cemented the sediment soon after deposition. The nodules appear to have flat faces and linear boundaries and stand above the surrounding siltstone. ChemCam LIBS (laser-induced breakdown spectrometry) shows that the nodules have MnO abundances approximately twenty times those of the surrounding siltstone matrix, contain little CaO, and have SiO2 and Al2O3 abundances similar to those of the siltstone. A deconvolution of APXS analyses of nodule-bearing targets, interpreted here as representing the nodules’ non-silicate components, shows high concentrations of MnO, P2O5, and FeO and a molar ratio P/Mn = 2. Visible to near-infrared reflectance of the nodules (by ChemCam passive and Mastcam multispectral) is dark and relatively flat, consistent with a mixture of host siltstone, hematite, and a dark spectrally bland material (like pyrolusite, MnO2). A drill sample at the site is shown to contain minimal nodule material, implying that analyses by the CheMin and SAM instruments do not constrain the nodules’ mineralogy or composition. The fact that the nodules contain P and Mn in a small molar integer ratio, P/Mn = 2, suggests that the nodules contained a stoichiometric Mn-phosphate mineral, in which Fe did (i.e., could) not substitute for Mn. The most likely such minerals are laueite and strunzite, (Fe2+,Mn2+)3(PO4)2·8H2O and –6H2O, respectively, which occur on Earth as alteration products of other Mn-bearing phosphates including vivianite. Vivianite is a common primary and diagenetic precipitate from low-oxygen, P-enriched waters. Calculated phase equilibria show Mn-bearing vivianite could be replaced by laueite or strunzite and then by hematite plus pyrolusite as the system became more oxidizing and acidic. These data suggest that the nodules originated as vivianite, forming as euhedral crystals in the sediment, enclosing sediment grains as they grew. After formation, the nodules were oxidized—first to laueite/strunzite yielding the diagnostic P/Mn ratio, and then to hematite plus an undefined Mn oxy-hydroxide (like pyrolusite). The limited occurrence of these Mn-Fe-P nodules, both in space and time (i.e., stratigraphic position), suggests a local control on their origin. By terrestrial analogies, it is possible that the nodules precipitated near a spring or seep of Mn-rich water, generated during alteration of olivine in the underlying sediments
    corecore