306 research outputs found

    Metamorphism in the eastern Lac Seul region of the English River subprovince, Ontario

    Get PDF
    The English River subprovince of the Superior Province, Canada, is a linear, east-west trending high-grade metamorphic belt which extends from Lake Winnipeg in the west, to the James Bay lowlands in the east. It is composed of two prominent lithologic domains: a northern sedimentary gneiss-migmatite domain, and a southern plutonic domain. The northern domain consists primarily of alternating migmatized layers of garnet-biotite wacke and garnet-cordierite-biotite pelitic metasediments. The southern domain is composed mainly of intermediate granitic to trondhjemitic plutons. Bordering to the north and south are the lower grade Uchi and Wabigoon greenstone belts. Metamorphism and migmatization occurred during the Kenoran orogeny approximately 2.68 B.Y. ago. By conducting a detailed geothermometry-geobarometry study, patterns of metamorphism were detected which further develop our understanding of the processes operating on the earth at this very early time in its history. Results from the application of geobarometers have shown that the pressures attained during metamorphism were constant throughout the 2 15000 Km eastern Lac Seul region of the English River subprovince (5 +/- 1 Kbar). There is strong evidence from garnet-orthopyroxene barometry that pressures may have been constant over the rest of the subprovince as well. Temperatures attained during metamorphism show a trend across the subprovince, depicting a thermal anticline whose axis runs approximately east-west parallel to the strike of the subprovince. Temperatures ranged from 6oo0 c at the contact with the Uchi greenstone belt, 675°c for the garnet-cordierite in isograd, 700°c for the orthopyroxene in isograd, with maximum temperatures of around 750°c at the center of the subprovince. Langford and Morin (1976), noting the similarity of the Superior Province to the Canadian Cordillera, propose a model of accreting island arcs for the Superior Province. The strong contrasts in lithologies and structure between the northern sedimentary and southern plutonic domains suggest that the southern domain could be an allochthonous terrain accreted onto the northern domain. Since geobarometry has shown that the sediments were buried to a depth of at least 20 kms, it is postulated that the southern domain was thrust onto the sediments. Erosion has cut obliquely through the thrust plane resulting in metasediments exposed in the north, and plutonics to the south. The temperatures attained in the English River subprovince are several hundred degrees greater than can be explained by conductive heating alone. The contribution of a convective magmatic heat component must be invoked to explain the high temperatures. Block faulting and uplift with a magmatic heat source at the center of the block, combined with thermal diffusivity, explains both the high temperatures, and the thermal anticline of the English River subprovince

    A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Get PDF
    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of Rietveld methods for XRD data analysis can provide a powerful tool for quantitative mineralogy and for obtaining crystallographic data on complex minerals

    X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    Get PDF
    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument

    CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    Get PDF
    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract

    Mineralogical and Geochemical Trends in a Fluviolacustrine Sequence in Gale Crater, Mars

    Get PDF
    The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and geochemical variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. Geochemical data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and geochemical trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones

    Diagenetic Mineralogy at Gale Crater, Mars

    Get PDF
    Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the dry atmosphere of Mars has been proposed but considered unlikely based on lab studies of dehydration kinetics in powdered samples. Dehydration is even less likely for bulk vein samples, as lab data show dehydration rates one to two orders of magnitude slower in bulk samples than in powders. On Mars, exposure ages of 100 Ma or more may be a significant factor in dehydration of hydrous phases
    corecore