362 research outputs found

    Three clusters of the SMC from ACS/WFC HST archive data: NGC 265, K~29 and NGC 290 and their fields

    Full text link
    We determine the age, metallicity and initial mass function of three clusters, namely NGC 265, K~29, NGC 290, located in the main body of the Small Magellanic Cloud. In addition, we derive the history of star formation in the companion fields. We make use of ACS/WFC HST archive data. For the clusters, the age and metallicity are derived fitting the integrated luminosity function with single synthetic stellar population by means of the χ2\chi^2 minimization. For the companion fields, the history of star formation is derived using the χ2\chi^2 minimization together with the downhill-simplex method.For the clusters we find the following ages and metallicities: NGC 265 has log(Age)=8.5±0.38.5\pm0.3 yr and metallicity 0.004±0.0030.004\pm0.003(or [Fe/H]=-0.62); \object{K~29} has log(Age)=8.2±0.28.2\pm0.2 yr and metallicity Z=0.003±0.0020.003\pm0.002 (or [Fe/H]=-0.75); NGC 290 has log(Age)=7.8±0.57.8\pm0.5 yr and metallicity 0.003±0.0020.003\pm0.002(or [Fe/H]=-0.75). The superior quality of the data allows the study of the initial mass function down to M∼ \sim 0.7 M⊙_\odot. The initial mass function turns out to be in agreement with the standard Kroupa model. The comparison of the NGC 265 luminosity function with the theoretical ones from stellar models both taking overshoot from the convective core into account and neglecting it, seems to suggest that a certain amount of convective overshoot is required. The star formation rate of the field population presents periods of enhancements at 300-400 Myr, 3-4 Gyr and finally 6 Gyr. However it is relatively quiescent at ages older than 6 Gyr. This result suggests that at older ages, the tidal interaction between the Magellanic Clouds and the Milky Way was not able to trigger significant star formation events.Comment: 20 pages. A&A accepte

    Environmental effects on star formation in dwarf galaxies and star clusters

    Full text link
    We develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investigate most kinds of orbits allowed in a gravitationally bound system of stars in interaction with a major massive companion. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system (as a dwarf galaxy or a globular cluster) on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. This criterion predicts the threshold value for the onset of star formation in a mass vs. size space for any orbit of interest. Moreover, we show for the first time the theoretical dependencies of the different instability phenomena acting on a system in a fully analytical way.Comment: ACCEPTED in A&A the 09/09/2014. Changes from ver 1: the non-inertial linear-response theory for gas instabilities in spherical coordinates is moved to the Appenidx and will be available only on-lin

    Orbital evolution of the Carina dwarf galaxy and self-consistent star formation history determination

    Full text link
    We present a new study of the evolution of the Carina dwarf galaxy that includes a simultaneous derivation of its orbit and star formation history. The structure of the galaxy is constrained through orbital parameters derived from the observed distance, proper motions, radial velocity and star formation history. The different orbits admitted by the large proper motion errors are investigated in relation to the tidal force exerted by an external potential representing the Milky Way (MW). Our analysis is performed with the aid of fully consistent N-body simulations that are able to follow the dynamics and the stellar evolution of the dwarf system in order to determine self-consistently the star formation history of Carina. We find a star formation history characterized by several bursts, partially matching the observational expectation. We find also compatible results between dynamical projected quantities and the observational constraints. The possibility of a past interaction between Carina and the Magellanic Clouds is also separately considered and deemed unlikely.Comment: Accepted in A&

    Testing intermediate-age stellar evolution models with VLT photometry of LMC clusters. I. The data

    Get PDF
    This is the first of a series of three papers devoted to the calibration of a few parameters of crucial importance in the modeling of the evolution of intermediate-mass stars, with special attention to the amount of convective core overshoot. To this end we acquired deep V and R photometry for three globular clusters of the Large Magellanic Cloud (LMC), namely NGC 2173, SL 556 and NGC 2155, in the age interval 1-3 Gyr. In this first paper, we describe the aim of the project, the VLT observations and data reduction, and we make preliminary comparisons of the color-magnitude diagrams with both Padova and Yonsei-Yale isochrones. Two following papers in this series present the results of a detailed analysis of these data, independently carried out by members of the Yale and Padova stellar evolution groups. This allows us to compare both sets of models and discuss their main differences, as well as the systematic effects that they would have to the determination of the ages and metallicities of intermediate-age single stellar populations.Comment: 27 pages with 10 figures. Accepted by the Astronomical Journa
    • …
    corecore