We present a new study of the evolution of the Carina dwarf galaxy that
includes a simultaneous derivation of its orbit and star formation history. The
structure of the galaxy is constrained through orbital parameters derived from
the observed distance, proper motions, radial velocity and star formation
history. The different orbits admitted by the large proper motion errors are
investigated in relation to the tidal force exerted by an external potential
representing the Milky Way (MW). Our analysis is performed with the aid of
fully consistent N-body simulations that are able to follow the dynamics and
the stellar evolution of the dwarf system in order to determine
self-consistently the star formation history of Carina. We find a star
formation history characterized by several bursts, partially matching the
observational expectation. We find also compatible results between dynamical
projected quantities and the observational constraints. The possibility of a
past interaction between Carina and the Magellanic Clouds is also separately
considered and deemed unlikely.Comment: Accepted in A&