397 research outputs found

    Angiotensin-(1-7) prevents lipopolysaccharide-induced autophagy via the Mas receptor in skeletal muscle

    Get PDF
    Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes a severe muscle function reduction. The increased autophagy contributes to sepsis-induced skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux, and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown. In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6 wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl. This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12 cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio, autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2) phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7) prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex involved at the beginning of autophagy

    Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene

    Get PDF
    Middle ear microbial profiles of indigenous Filipinos with chronic otitis media. All panels compare carriers with non-carriers of the A2ML1 duplication variant. Panel description: (A) ι-diversity by observed OTUs; (B) ι-diversity by the Shannon diversity index; (C) β-diversity from unweighted UniFrac principal coordinate analysis; (D) β-diversity from weighted UniFrac principal coordinate analysis. (PDF 1019 kb

    Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C−H Bond Activation

    Get PDF
    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C−H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh−N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh−NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C−H bond occurs. The resulting Rh−H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C−H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations

    Bacterial Toxicity of Potassium Tellurite: Unveiling an Ancient Enigma

    Get PDF
    Biochemical, genetic, enzymatic and molecular approaches were used to demonstrate, for the first time, that tellurite (TeO(3) (2−)) toxicity in E. coli involves superoxide formation. This radical is derived, at least in part, from enzymatic TeO(3) (2−) reduction. This conclusion is supported by the following observations made in K(2)TeO(3)-treated E. coli BW25113: i) induction of the ibpA gene encoding for the small heat shock protein IbpA, which has been associated with resistance to superoxide, ii) increase of cytoplasmic reactive oxygen species (ROS) as determined with ROS-specific probe 2′7′-dichlorodihydrofluorescein diacetate (H(2)DCFDA), iii) increase of carbonyl content in cellular proteins, iv) increase in the generation of thiobarbituric acid-reactive substances (TBARs), v) inactivation of oxidative stress-sensitive [Fe-S] enzymes such as aconitase, vi) increase of superoxide dismutase (SOD) activity, vii) increase of sodA, sodB and soxS mRNA transcription, and viii) generation of superoxide radical during in vitro enzymatic reduction of potassium tellurite

    Overview of the Proton-coupled MCT (SLC16A) Family of Transporters: Characterization, Function and Role in the Transport of the Drug of Abuse γ-Hydroxybutyric Acid

    Get PDF
    The transport of monocarboxylates, such as lactate and pyruvate, is mediated by the SLC16A family of proton-linked membrane transport proteins known as monocarboxylate transporters (MCTs). Fourteen MCT-related genes have been identified in mammals and of these seven MCTs have been functionally characterized. Despite their sequence homology, only MCT1–4 have been demonstrated to be proton-dependent transporters of monocarboxylic acids. MCT6, MCT8 and MCT10 have been demonstrated to transport diuretics, thyroid hormones and aromatic amino acids, respectively. MCT1–4 vary in their regulation, tissue distribution and substrate/inhibitor specificity with MCT1 being the most extensively characterized isoform. Emerging evidence suggests that in addition to endogenous substrates, MCTs are involved in the transport of pharmaceutical agents, including γ-hydroxybuytrate (GHB), 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), salicylic acid, and bumetanide. MCTs are expressed in a wide range of tissues including the liver, intestine, kidney and brain, and as such they have the potential to impact a number of processes contributing to the disposition of xenobiotic substrates. GHB has been extensively studied as a pharmaceutical substrate of MCTs; the renal clearance of GHB is dose-dependent with saturation of MCT-mediated reabsorption at high doses. Concomitant administration of GHB and l-lactate to rats results in an approximately two-fold increase in GHB renal clearance suggesting that inhibition of MCT1-mediated reabsorption of GHB may be an effective strategy for increasing renal and total GHB elimination in overdose situations. Further studies are required to more clearly define the role of MCTs on drug disposition and the potential for MCT-mediated detoxification strategies in GHB overdose

    Psychological Health of Surgeons in a Time of COVID-19: A Global Survey

    Get PDF
    OBJECTIVE: To assess the degree of psychological impact among surgical providers during the COVID-19 pandemic. SUMMARY BACKGROUND DATA: The COVID-19 pandemic has extensively impacted global healthcare systems. We hypothesized that the degree of psychological impact would be higher for surgical providers deployed for COVID-19 work, certain surgical specialties, and for those who knew of someone diagnosed with, or who died, of COVID-19. METHODS: We conducted a global web-based survey to investigate the psychological impact of COVID-19. The primary outcomes were the Depression Anxiety Stress Scale-21 (DASS-21) and Impact of Event Scale-Revised (IES-R) scores. RESULTS: 4283 participants from 101 countries responded. 32.8%, 30.8%, 25.9% and 24.0% screened positive for depression, anxiety, stress and Post-Traumatic Stress Disorder (PTSD) respectively. Respondents who knew someone who died of COVID-19 were more likely to screen positive for depression, anxiety, stress and PTSD (OR 1.3, 1,6, 1.4, 1.7 respectively, all p < 0.05). Respondents who knew of someone diagnosed with COVID-19 were more likely to screen positive for depression, stress and PTSD (OR 1.2, 1.2 and 1.3 respectively, all p < 0.05). Surgical specialities that operated in the Head and Neck region had higher psychological distress among its surgeons. Deployment for COVID-19-related work was not associated with increased psychological distress. CONCLUSIONS: The COVID-19 pandemic may have a mental health legacy outlasting its course. The long-term impact of this ongoing traumatic event underscores the importance of longitudinal mental health care for healthcare personnel, with particular attention to those who know of someone diagnosed with, or who died of COVID-19

    Eugenia punicifolia leaf extract has a hypotensive effect and inhibits angiotensin-converting enzyme activity in both in vitro and in vivo models.

    Get PDF
    Chronic high blood pressure has for many years been considered a public health problem. Eugenia punicifolia is a plant used to treat diabetes by the local population, however its hypotensive effect has never been investigated

    How and Why Parents Guide the Media Use of Young Children

    Get PDF
    Abstract Children use electronic screens at ever younger ages, but there is still little empirical research on howand why parents mediate this media use. In line with Vygotsky’s zone of proximal development, we explored whether children’s media skills and media activities, next to parents’ attitudes about media for children, and several child and parent-family characteristics, predicted parental mediation practices. Furthermore, we investigated children’s use and ownership of electronic screens in the bedroomin relationship to the child’s media skills. Data from an online survey among 896 Dutch parents with young children (0–7 years) showed that children’s use and ownership of TV, game consoles, computers and touchscreens, primarily depended on their media skills and age, not on parent’s attitudes about media for children. Only touchscreens were used more often by children, when parents perceived media as helpful in providing moments of rest for the child. In line with former studies, parents consistently applied co-use, supervision, active mediation, restrictive mediation, and monitoring, depending on positive and negative attitudes about media. The child’s media skills andmedia activities, however, had stronger relationshipswith parental mediation styles, whereas age was not related. Canonical discriminant analysis, finally, captured how the five mediation strategies varied among infants, toddlers, preschoolers, and early childhood children, predominantly as a result of children’s media skills, and media activities, i.e., playing educational games and passive entertainment use
    corecore