4 research outputs found

    Geographical and temporal variation in reduction of malaria infection among children under 5 years of age throughout Nigeria.

    Get PDF
    INTRODUCTION: Global progress in reducing malaria has stalled since 2015. Analysis of the situation is particularly needed in Nigeria, the country with by far the largest share of the burden, where approximately a quarter of all cases in the world are estimated to occur. METHODS: We analysed data from three nationwide surveys (Malaria Indicator Surveys in 2010 and 2015 and a National Demographic and Health Survey in 2018), with malaria parasite prevalence in children under 5 years of age determined by sampling from all 36 states of Nigeria, and blood slide microscopy performed in the same accredited laboratory for all samples. Changes over time were evaluated by calculating prevalence ratio (PR) values with 95% CIs for each state, together with Mantel-Haenszel-adjusted PRs (PRadj) for each of the six major geopolitical zones of the country. RESULTS: Between 2010 and 2018, there were significant reductions in parasite prevalence in 25 states, but not in the remaining 11 states. Prevalence decreased most in southern zones of the country (South West PRadj=0.53; South East PRadj=0.59; South South PRadj=0.51) and the North Central zone (PRadj=0.36). Changes in the north were less marked, but were significant and indicated overall reductions by more than 20% (North-West PRadj=0.74; North East PRadj=0.70). Changes in the south occurred mostly between 2010 and 2015, whereas those in the north were more gradual and most continued after 2015. Recent changes were not correlated with survey-reported variation in use of preventive measures. CONCLUSION: Reductions in malaria infection in children under 5 have occurred in most individual states in Nigeria since 2010, but substantial geographical variation in the timing and extent indicate challenges to be overcome to enable global malaria reduction

    Household possession, use and non-use of treated or untreated mosquito nets in two ecologically diverse regions of Nigeria – Niger Delta and Sahel Savannah

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current use of treated mosquito nets for the prevention of malaria falls short of what is expected in sub-Saharan Africa (SSA), though research within the continent has indicated that the use of these commodities can reduce malaria morbidity by 50% and malaria mortality by 20%. Governments in sub-Sahara Africa are investing substantially in scaling-up treated mosquito net coverage for impact. However, certain significant factors still prevent the use of the treated mosquito nets, even among those who possess them. This survey examines household ownership as well as use and non-use of treated mosquito nets in Sahel Savannah and Niger Delta regions of Nigeria.</p> <p>Methodology</p> <p>This survey employed cross-sectional survey to collect data from households on coverage and use of mosquito nets, whether treated or not. Fever episodes in previous two weeks among children under the age of five were also recorded. The study took place in August 1 – 14 2007, just five months after the March distribution of treated mosquito nets, coinciding with the second raining period of the year and a time of high malaria transmission during the wet season. EPI INFO version 2003 was used in data analysis.</p> <p>Results</p> <p>The survey covered 439 households with 2,521 persons including 739 under-fives, 585 women in reproductive age and 78 pregnant women in Niger Delta Region and Sahel Savannah Region. Of the 439 HHs, 232 had any mosquito nets. Significantly higher proportion of households in the Niger Delta Region had any treated or untreated mosquito nets than those in the Sahel Savannah Region. In the Niger Delta Region, the proportion of under-fives that had slept under treated nets the night before the survey exceeded those that slept under treated nets in the Sahel Savannah Region. Children under the age of five years in the Niger Delta Region were four times more likely to sleep under treated nets than those in the Sahel Savannah Region.</p> <p>Conclusion</p> <p>This study found that despite the fact that treated nets were distributed widely across Nigeria, the use of this commodity was still very low in the Sahel Savannah region. Future campaigns should include more purposeful social and health education on the importance and advantages of the use of treated nets to save lives in the Sahel Savannah region of Nigeria.</p

    Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria.

    No full text
    Anopheles gambiae, An. coluzzii and An. arabiensis are the three major vectors of malaria in Nigeria. These mosquitoes have developed resistance to different insecticides. Insecticides resistance intensity assay was recently introduced to provide insight into the potential operational significance of insecticide resistance. Here, we present data on pyrethroids resistance intensity and resistance mechanisms from six vector surveillance sites (Lagos, Ogun, Edo, Anambra, Kwara and Niger) in Nigeria. Adult Anopheles reared from larval collections were tested using WHO insecticides susceptibility protocol with 1x concentration of permethrin and deltamethrin followed with intensity assays with 5x and 10x concentrations of both insecticides. Synergistic and biochemical assays were carried out and underlying resistance mechanisms determined following standard protocols. Anopheles gambiae constituted >50% samples tested in five sites. Permethrin and deltamethrin resistance was observed at all the sites. The Kdt50 varied from 15 minutes (CI = 13.6-17.2) in deltamethrin to 42.1 minutes (CI = 39.4-44.1) in permethrin. For both insecticides, Kdt95 was >30 minutes with 25% to 87% post exposure mortality at the different sites. The West Africa knock down resistance (kdr-w) mechanism was found at each site. Resistant An. gambiae from Lagos, Ogun and Niger synergized prior to permethrin or deltamethrin exposure showed significant mortality (89-100%) compared to unsynergized mosquitoes (Lagos, p = 0.031; Ogun, p = 0.025; Niger, p = 0.018). Biochemical analyses revealed significant increased levels of P450 enzymes in resistant Anopheles gambiae from Lagos (p = 0.038); Ogun (p = 0.042) and Niger (p = 0.028) in addition to GST in Lagos (p = 0.028) and Ogun (p = 0.033). Overall, the results revealed high pyrethroid resistance associated with increased activities of metabolic enzymes (P450 + GST) in An. gambiae and An. coluzzii from Lagos and Ogun. The presence of kdr + P450 conferred moderate resistance whereas low resistance was the case where kdr was the sole resistance mechanism. Findings thus suggests that elevated levels of cytochrome P450 enzymes together with GST were responsible for high or severe pyrethroid resistance

    Spatial distribution and ecological niche modeling of geographical spread of Anopheles gambiae complex in Nigeria using real time data

    No full text
    Abstract The need for evidence-based data, to inform policy decisions on malaria vector control interventions in Nigeria, necessitated the establishment of mosquito surveillance sites in a few States in Nigeria. In order to make evidence-based-decisions, predictive studies using available data becomes imperative. We therefore predict the distribution of the major members of the Anopheles gambiae s.l. in Nigeria. Immature stages of Anopheles were collected from 72 study locations which span throughout the year 2020 resulted in the identification of over 60,000 Anopheline mosquitoes. Of these, 716 breeding sites were identified with the presence of one or more vector species from the An. gambiae complex and were subsequently used for modelling the potential geographical distribution of these important malaria vectors. Maximum Entropy (MaxEnt) distribution modeling was used to predict their potentially suitable vector habitats across Nigeria. A total of 23 environmental variables (19 bioclimatic and four topographic) were used in the model resulting in maps of the potential geographical distribution of three dominant vector species under current climatic conditions. Members of the An. gambiae complex dominated the collections (98%) with Anopheles stephensi, Anopheles coustani, Anopheles funestus, Anopheles moucheti, Anopheles nilli also present. An almost equal distribution of the two efficient vectors of malaria, An. gambiae and Anopheles coluzzii, were observed across the 12 states included in the survey. Anopheles gambiae and Anopheles coluzzii had almost equal, well distributed habitat suitability patterns with the latter having a slight range expansion. However, the central part of Nigeria (Abuja) and some highly elevated areas (Jos) in the savannah appear not suitable for the proliferation of these species. The most suitable habitat for Anopheles arabiensis was mainly in the South-west and North-east. The results of this study provide a baseline allowing decision makers to monitor the distribution of these species and establish a management plan for future national mosquito surveillance and control programs in Nigeria
    corecore