4 research outputs found

    Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review

    Get PDF
    Solid–lipid nanoparticles and nanostructured lipid carriers are delivery systems for the delivery of drugs and other bioactives used in diagnosis, therapy, and treatment procedures. These nanocarriers may enhance the solubility and permeability of drugs, increase their bioavailability, and extend the residence time in the body, combining low toxicity with a targeted delivery. Nanostructured lipid carriers are the second generation of lipid nanoparticles differing from solid lipid nanoparticles in their composition matrix. The use of a liquid lipid together with a solid lipid in nanostructured lipid carrier allows it to load a higher amount of drug, enhance drug release properties, and increase its stability. Therefore, a direct comparison between solid lipid nanoparticles and nanostructured lipid carriers is needed. This review aims to describe solid lipid nanoparticles and nanostructured lipid carriers as drug delivery systems, comparing both, while systematically elucidating their production methodologies, physicochemical characterization, and in vitro and in vivo performance. In addition, the toxicity concerns of these systems are focused on.LA/P/0101/2020, LA/P/0140/2020info:eu-repo/semantics/publishedVersio

    RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: in vitro

    No full text
    In the present study, we have demonstrated receptor for advanced glycation endproducts (RAGE) as a target for delivery of drugs specifically to triple negative breast cancer cells. We have prepared solid lipid nanoparticle formulation of cytotoxic agent di-allyl-disulfide (DADS) to overcome its bioavailability issues. Then, we have surface modified DADS-loaded solid lipid nanoparticles (DADS-SLN) with RAGE antibody to achieve site-specific delivery of DADS to TNBC cells. We found a significant cellular internalization of RAGE surface modified DADS-SLN (DADS-RAGE-SLN) when compared to DADS-SLN. The cytotoxic effect of DADS was also significantly improved with DADS-RAGE-SLN by downregulating anti-apoptotic proteins and upregulating pro-apoptotic proteins as observed by western blot analysis. RAGE-targeted delivery of cytotoxic agents can be, therefore, a promising approach for improving antitumour activity and reducing off-target effects
    corecore