4 research outputs found

    Evaluation and comparison of spatial cluster detection methods for improved decision making of disease surveillance:a case study of national dengue surveillance in Thailand

    Get PDF
    BACKGROUND: Dengue is a mosquito-borne disease that causes over 300 million infections worldwide each year with no specific treatment available. Effective surveillance systems are needed for outbreak detection and resource allocation. Spatial cluster detection methods are commonly used, but no general guidance exists on the most appropriate method for dengue surveillance. Therefore, a comprehensive study is needed to assess different methods and provide guidance for dengue surveillance programs.METHODS: To evaluate the effectiveness of different cluster detection methods for dengue surveillance, we selected and assessed commonly used methods: Getis Ord [Formula: see text], Local Moran, SaTScan, and Bayesian modeling. We conducted a simulation study to compare their performance in detecting clusters, and applied all methods to a case study of dengue surveillance in Thailand in 2019 to further evaluate their practical utility.RESULTS: In the simulation study, Getis Ord [Formula: see text] and Local Moran had similar performance, with most misdetections occurring at cluster boundaries and isolated hotspots. SaTScan showed better precision but was less effective at detecting inner outliers, although it performed well on large outbreaks. Bayesian convolution modeling had the highest overall precision in the simulation study. In the dengue case study in Thailand, Getis Ord [Formula: see text] and Local Moran missed most disease clusters, while SaTScan was mostly able to detect a large cluster. Bayesian disease mapping seemed to be the most effective, with adaptive detection of irregularly shaped disease anomalies.CONCLUSIONS: Bayesian modeling showed to be the most effective method, demonstrating the best accuracy in adaptively identifying irregularly shaped disease anomalies. In contrast, SaTScan excelled in detecting large outbreaks and regular forms. This study provides empirical evidence for the selection of appropriate tools for dengue surveillance in Thailand, with potential applicability to other disease control programs in similar settings.</p

    Spatiotemporal Epidemiology of Tuberculosis in Thailand from 2011 to 2020

    Get PDF
    Tuberculosis is a leading cause of infectious disease globally, especially in developing countries. Better knowledge of spatial and temporal patterns of tuberculosis burden is important for effective control programs as well as informing resource and budget allocation. Studies have demonstrated that TB exhibits highly complex dynamics in both spatial and temporal dimensions at different levels. In Thailand, TB research has been primarily focused on surveys and clinical aspects of the disease burden with little attention on spatiotemporal heterogeneity. This study aimed to describe temporal trends and spatial patterns of TB incidence and mortality in Thailand from 2011 to 2020. Monthly TB case and death notification data were aggregated at the provincial level. Age-standardized incidence and mortality were calculated; time series and global and local clustering analyses were performed for the whole country. There was an overall decreasing trend with seasonal peaks in the winter. There was spatial heterogeneity with disease clusters in many regions, especially along international borders, suggesting that population movement and socioeconomic variables might affect the spatiotemporal distribution in Thailand. Understanding the space-time distribution of TB is useful for planning targeted disease control program activities. This is particularly important in low- and middle-income countries including Thailand to help prioritize allocation of limited resources
    corecore