95 research outputs found

    Postnatal development of onset transient responses in macaque V1 AND V2 neuron

    Get PDF
    Vision of newborn infants is limited by immaturities in their visual brain. In adult primates, the transient onset discharges of visual cortical neurons are thought to be intimately involved with capturing the rapid succession of brief images in visual scenes. Here we sought to determine the responsiveness and quality of transient responses in individual neurons of the primary visual cortex (V1) and visual area 2 (V2) of infant monkeys. We show that the transient component of neuronal firing to 640-ms stationary gratings was as robust and as reliable as in adults only 2 wk after birth, whereas the sustained component was more sluggish in infants than in adults. Thus the cortical circuitry supporting onset transient responses is functionally mature near birth, and our findings predict that neonates, known for their impoverished vision, are capable of initiating relatively mature fixating eye movements and of performing in detection of simple objects far better than traditionally though

    Receptive-field subfields of V2 neurons in macaque monkey are adult-like near birth

    Get PDF
    Infant primates can discriminate texture-defined form despite their relatively low visual acuity. The neuronal mechanisms underlying this remarkable visual capacity of infants have not been studied in nonhuman primates. Since many V2 neurons in adult monkeys can extract the local features in complex stimuli that are required for form vision, we used two-dimensional dynamic noise stimuli and local spectral reverse correlation (LSRC) to measure whether the spatial map of receptive-field subfields in individual V2 neurons is sufficiently mature near birth to capture local features. As in adults, most V2 neurons in 4-week-old monkeys showed a relatively high degree of homogeneity in the spatial matrix of facilitatory subfields. However, about 25% of V2 neurons had the subfield map where the neighboring facilitatory subfields substantially differed in their preferred orientations and spatial frequencies. Over 80% of V2 neurons in both infants and adults had ‘tuned’ suppressive profiles in their subfield maps that could alter the tuning properties of facilitatory profiles. The differences in the preferred orientations between facilitatory and suppressive profiles were relatively large but extended over a broad range. Response immaturities in infants were mild; the overall strength of facilitatory subfield responses was lower than that in adults and the optimal correlation delay (‘latency’) was longer in 4-week-old infants. These results suggest that as early as 4 weeks of age, the spatial receptive-field structure of V2 neurons is as complex as in adults and the ability of V2 neurons to compare local features of neighboring stimulus elements is nearly adult like

    Dynamics of spatial frequency tuning in mouse visual cortex

    Get PDF
    Neuronal spatial frequency tuning in primary visual cortex (V1) substantially changes over time. In both primates and cats, a shift of the neuron\u27s preferred spatial frequency has been observed from low frequencies early in the response to higher frequencies later in the response. In most cases, this shift is accompanied by a decreased tuning bandwidth. Recently, the mouse has gained attention as a suitable animal model to study the basic mechanisms of visual information processing, demonstrating similarities in basic neuronal response properties between rodents and highly visual mammals. Here we report the results of extracellular single-unit recordings in the anesthetized mouse where we analyzed the dynamics of spatial frequency tuning in V1 and the lateromedial area LM within the lateral extrastriate area V2L. We used a reverse-correlation technique to demonstrate that, as in monkeys and cats, the preferred spatial frequency of mouse V1 neurons shifted from low to higher frequencies later in the response. However, this was not correlated with a clear selectivity increase or enhanced suppression of responses to low spatial frequencies. These results suggest that the neuronal connections responsible for the temporal shift in spatial frequency tuning may considerably differ between mice and monkeys

    Local Sensitivity to Stimulus Orientation and Spatial Frequency within the Receptive Fields of Neurons in Visual Area 2 (V2) of Macaque Monkeys

    Get PDF
    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features

    Topographic map reorganization in cat area 17 after early monocular retinal lesions

    Get PDF
    Neither discrete peripheral retinal lesions nor the normal optic disk produces obvious holes in one\u27s percept of the world because the visual brain appears to perceptually fill in these blind spots. Where in the visual brain or how this filling in occurs is not well understood. A prevailing hypothesis states that topographic map of visual cortex reorganizes after retinal lesions, which sews up the hole in the topographic map representing the deprived area of cortex (cortical scotoma) and may lead to perceptual filling in. Since the map reorganization does not typically occur unless retinotopically matched lesions are made in both eyes, we investigated the conditions in which monocular retinal lesions can induce comparable map reorganization. We found that following monocular retinal lesions, deprived neurons in cat area 17 can acquire new receptive fields if the lesion occurred relatively early in life (8 weeks of age) and the lesioned cats experienced a substantial period of recovery (\u3e3 years). Quantitative determination of the monocular and binocular response properties of reactivated units indicated that responses to the lesioned eye for such neurons were remarkably robust, and that the receptive-field properties for the two eyes were generally similar. Moreover, excitatory or inhibitory binocular interactions were found in the majority of experimental units when the two eyes were activated together. These results are consistent with the hypothesis that map reorganization after monocular retinal lesions require experience-dependent plasticity and may be involved in the perceptual filling in of blind spots due to retinal lesions early in life

    Binocular deficits associated with early alternating monocular defocus. II. Neurophysiological observations

    Get PDF
    Experiencing binocularly conflicting signals early in life dramatically alters the binocular responses of cortical neurons. Because visual cortex is highly plastic during a critical period of development, cortical deficits resulting from early abnormal visual experience often mirror the nature of interocular decorrelation of neural signals from the two eyes. In the preceding paper, we demonstrated that monkeys that experienced early alternating monocular defocus (-1.5, -3.0, or -6.0 D) show deficits in stereopsis that generally reflected the magnitude of imposed monocular defocus. Because these results indicated that alternating monocular defocus affected the higher spatial frequency components of visual scenes more severely, we employed microelectrode recording methods to investigate whether V1 neurons in these lens-reared monkeys exhibited spatial-frequency-dependent alterations in their binocular response properties. We found that a neuron\u27s sensitivity to interocular spatial phase disparity was reduced in the treated monkeys and that this reduction was generally more severe for units tuned to higher spatial frequencies. In the majority of the affected units, the disparity-sensitivity loss was associated with interocular differences in monocular receptive field properties. The present results suggest that the behavioral deficits in stereopsis produced by abnormal visual experience reflect at least in part the constraints imposed by alterations at the earliest stages of binocular cortical processing and support the hypothesis that the local disparity processing mechanisms in primates are spatially tuned and can be independently compromised by early abnormal visual experience

    Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys

    Get PDF
    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion

    Development of temporal response properties and contrast sensitivity of V1 and V2 neurons in macaque monkeys

    Get PDF
    The temporal contrast sensitivity of human infants is reduced compared to that of adults. It is not known which neural structures of our visual brain sets limits on the early maturation of temporal vision. In this study we investigated how individual neurons in the primary visual cortex (V1) and visual area 2 (V2) of infant monkeys respond to temporal modulation of spatially optimized grating stimuli and a range of stimulus contrasts. As early as 2 wk of age, V1 and V2 neurons exhibited band-pass temporal frequency tuning. However, the optimal temporal frequency and temporal resolution of V1 neurons were much lower in 2- and 4-wk-old infants than in 8-wk-old infants or adults. V2 neurons of 8-wk-old monkeys had significantly lower optimal temporal frequencies and resolutions than those of adults. Onset latency was longer in V1 at 2 and 4 wk of age and was slower in V2 even at 8 wk of age than in adults. Contrast threshold of V1 and V2 neurons was substantially higher in 2- and 4-wk-old infants but became adultlike by 8 wk of age. For the first 4 wk of life, responses to high-contrast stimuli saturated more readily in V2. The present results suggest that although the early development of temporal vision and contrast sensitivity may largely depend on the functional maturation of precortical structures, it is also likely to be limited by immaturities that are unique to V1 and V

    Cortical effects of brief daily periods of unrestricted vision during early monocular form deprivation

    Get PDF
    Experiencing daily brief periods of unrestricted vision during early monocular form deprivation prevents or reduces the degree of resulting amblyopia. To gain insight into the neural basis for these protective effects, we analyzed the monocular and binocular response properties of individual neurons in the primary visual cortex (V1) of macaque monkeys that received intermittent unrestricted vision. Microelectrode-recording experiments revealed significant decreases in the proportion of units that were dominated by the treated eyes, and the magnitude of this ocular dominance imbalance was correlated with the degree of amblyopia. The sensitivity of V1 neurons to interocular spatial phase disparity was significantly reduced in all treated monkeys compared with normal adults. With unrestricted vision, however, there was a small but significant increase in overall disparity sensitivity. Binocular suppression was prevalent in monkeys with constant form deprivation but significantly reduced by the daily periods of unrestricted vision. If neurons exhibited consistent responses to stimulation of the treated eye, monocular response properties obtained by stimulation of the two eyes were similar. These results suggest that the observed protective effects of brief periods of unrestricted vision are closely associated with the ability of V1 neurons to maintain their functional connections from the deprived eye and that interocular suppression in V1 may play an important role in regulating synaptic plasticity of these monkeys

    Effects of perceptual learning on local stereopsis and neuronal responses of V1 and V2 in prism-reared monkeys.

    Get PDF
    Visual performance improves with practice (perceptual learning). In this study, we sought to determine whether or not adult monkeys reared with early abnormal visual experience improve their stereoacuity by extensive psychophysical training and testing, and if so, whether alterations of neuronal responses in the primary visual cortex (V1) and/or visual area 2 (V2) are involved in such improvement. Strabismus was optically simulated in five macaque monkeys using a prism-rearing procedure between 4 and 14 wk of age. Around 2 yr of age, three of the prism-reared monkeys ( trained monkeys) were tested for their spatial contrast sensitivity and stereoacuity. Two other prism-reared monkeys received no training or testing ( untrained monkeys). Microelectrode experiments were conducted around 4 yr of age. All three prism-reared trained monkeys showed improvement in stereoacuity by a factor of 7 or better. However, final stereothresholds were still approximately 10-20 times worse than those in normal monkeys. In V1, disparity sensitivity was drastically reduced in both the trained and untrained prism-reared monkeys and behavioral training had no obvious effect. In V2, the disparity sensitivity in the trained monkeys was better by a factor of approximately 2.0 compared with that in the untrained monkeys. These data suggest that the observed improvement in stereoacuity of the trained prism-reared monkeys may have resulted from better retention of disparity sensitivity in V2 and/or from learning by upstream neurons to more efficiently attend to residual local disparity information in V1 and V
    • …
    corecore