654 research outputs found

    When Hashing Met Matching: Efficient Spatio-Temporal Search for Ridesharing

    Full text link
    Carpooling, or sharing a ride with other passengers, holds immense potential for urban transportation. Ridesharing platforms enable such sharing of rides using real-time data. Finding ride matches in real-time at urban scale is a difficult combinatorial optimization task and mostly heuristic approaches are applied. In this work, we mathematically model the problem as that of finding near-neighbors and devise a novel efficient spatio-temporal search algorithm based on the theory of locality sensitive hashing for Maximum Inner Product Search (MIPS). The proposed algorithm can find kk near-optimal potential matches for every ride from a pool of nn rides in time O(n1+ρ(k+logn)logk)O(n^{1 + \rho} (k + \log n) \log k) and space O(n1+ρlogk)O(n^{1 + \rho} \log k) for a small ρ<1\rho < 1. Our algorithm can be extended in several useful and interesting ways increasing its practical appeal. Experiments with large NY yellow taxi trip datasets show that our algorithm consistently outperforms state-of-the-art heuristic methods thereby proving its practical applicability

    Activation of Ciona sperm motility: phosphorylation of dynein polypeptides and effects of a tyrosine kinase inhibitor

    Get PDF
    A high molecular mass dynein ATPase polypeptide and a 18–20 kDa dynein light chain of Ciona sperm flagella are phosphorylated during in vivo activation of motility or in vitro activation of motility by incubation with cyclic AMP. A similar level of phosphorylation of these proteins is obtained by incubation of washed, demembranated spermatozoa with catalytic subunit of cyclic AMP-dependent protein kinase, under conditions where there is no activation of motility until a supernatant component is added. Therefore, phosphorylation of these dynein polypeptides is not sufficient for activation of motility. Activation of motility in vitro by incubation with cyclic AMP can be completely inhibited by a random copolymer of glutamate and tyrosine that inhibits tyrosine kinase activity. Under these conditions, much of the protein phosphorylation associated with activation of motility is also inhibited. These new results suggest that regulation of motility of these spermatozoa may involve a multicomponent kinase cascade rather than a simple phosphorylation of a protein ‘switch’ by the cyclic AMP-dependent kinase. A 53 kDa axonemal phosphoprotein band, identified as band M1, shows the strongest correlation with activation of motility in these experiments
    corecore