40 research outputs found

    Targeted Sister Chromatid Cohesion by Sir2

    Get PDF
    The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together, these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme's role as a histone deacetylase

    Thermal Cycling Effect on Transformation Temperatures of Different Transformation Sequences in TiNi-Based Shape Memory Alloys

    No full text
    In TiNi-based shape memory alloys (SMAs), the effects of thermal cycling on the transformation peak temperatures of B2 ↔ B19′, B2 ↔ R, B2 ↔ B19, B2 ↔ R ↔ B19′, and B2 ↔ B19 ↔ B19′ one-stage and two-stage transformations have been investigated and compared. Experimental results of the differential scanning calorimeter and hardness tests indicate that the alloy’s intrinsic hardness and the shear strain, s, associated with martensitic transformation, are two important factors, due to their relation to the ease of introducing dislocations during cycling. The temperature decrease by cycling for one-stage transformation was in the order of B2 ↔ B19′ > B2 ↔ B19 > B2 ↔ R according to the orders of magnitude of their s values. This phenomenon also affected the suppression of B19 ↔ B19′ and R ↔ B19′ transformation peak temperatures in two-stage transformation. Both Ti50Ni48Fe2 and Ti48.7Ni51.3 SMAs aged at 450 °C for 4 h exhibited B2 ↔ R ↔ B19′ transformation, but the hardness of the latter was much higher than that of the former due to the precipitation hardening of the Ti3Ni4 precipitates. This causesd the decrease of the R ↔ B19′ transformation peak temperature in the Ti50Ni48Fe2 SMA to be much higher than that in Ti48.7Ni51.3 SMAs aged at 450 °C for 4 h, which directly affected the sequential B2 ↔ R transformation of Ti50Ni48Fe2 SMA in the next thermal cycle and decreased this transformation peak temperature. The Ti48Ni52 SMA aged at 600 °C for 150 h underwent B2 ↔ B19′ transformation and then B2 → R → B19′/B19′ → B2 transformation as the cycle number increased, in which the B2 ↔ R transformation peak temperature raised slightly by cycling. This characteristic is uncommon and may have resulted from the strain field around the thermal-cycled dislocations favoring the formation of the R-phase

    Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level.

    No full text
    Thrips-borne tospoviruses cause severe damage to crops worldwide. In this investigation, tobacco lines transgenic for individual WLm constructs containing the conserved motifs of the L RNA-encoded RNA-dependent RNA polymerase (L) gene of Watermelon silver mottle virus (WSMoV) were generated by Agrobacterium-mediated transformation. The WLm constructs included: (i) translatable WLm in a sense orientation; (ii) untranslatable WLmt with two stop codons; (iii) untranslatable WLmts with stop codons and a frame-shift; (iv) untranslatable antisense WLmA; and (v) WLmhp with an untranslatable inverted repeat of WLm containing the tospoviral S RNA 3'-terminal consensus sequence (5'-ATTGCTCT-3') and an NcoI site as a linker to generate a double-stranded hairpin transcript. A total of 46.7-70.0% transgenic tobacco lines derived from individual constructs showed resistance to the homologous WSMoV; 35.7-100% plants of these different WSMoV-resistant lines exhibited broad-spectrum resistance against four other serologically unrelated tospoviruses Tomato spotted wilt virus, Groundnut yellow spot virus, Impatiens necrotic spot virus and Groundnut chlorotic fan-spot virus. The selected transgenic tobacco lines also exhibited broad-spectrum resistance against five additional tospoviruses from WSMoV and Iris yellow spot virus clades, but not against RNA viruses from other genera. Northern analyses indicated that the broad-spectrum resistance is mediated by RNA silencing. To validate the L conserved region resistance in vegetable crops, the constructs were also used to generate transgenic tomato lines, which also showed effective resistance against WSMoV and other tospoviruses. Thus, our approach of using the conserved motifs of tospoviral L gene as a transgene generates broad-spectrum resistance against tospoviruses at the genus level

    The HSP40 family chaperone isoform DNAJB6b prevents neuronal cells from tau aggregation

    No full text
    Abstract Background Alzheimer’s disease (AD) is the most common neurodegenerative disorder with clinical presentations of progressive cognitive and memory deterioration. The pathologic hallmarks of AD include tau neurofibrillary tangles and amyloid plaque depositions in the hippocampus and associated neocortex. The neuronal aggregated tau observed in AD cells suggests that the protein folding problem is a major cause of AD. J-domain-containing proteins (JDPs) are the largest family of cochaperones, which play a vital role in specifying and directing HSP70 chaperone functions. JDPs bind substrates and deliver them to HSP70. The association of JDP and HSP70 opens the substrate-binding domain of HSP70 to help the loading of the clients. However, in the initial HSP70 cycle, which JDP delivers tau to the HSP70 system in neuronal cells remains unclear. Results We screened the requirement of a diverse panel of JDPs for preventing tau aggregation in the human neuroblastoma cell line SH-SY5Y by a filter retardation method. Interestingly, knockdown of DNAJB6, one of the JDPs, displayed tau aggregation and overexpression of DNAJB6b, one of the isoforms generated from the DNAJB6 gene by alternative splicing, reduced tau aggregation. Further, the tau bimolecular fluorescence complementation assay confirmed the DNAJB6b-dependent tau clearance. The co-immunoprecipitation and the proximity ligation assay demonstrated the protein–protein interaction between tau and the chaperone–cochaperone complex. The J-domain of DNAJB6b was critical for preventing tau aggregation. Moreover, reduced DNAJB6 expression and increased tau aggregation were detected in an age-dependent manner in immunohistochemical analysis of the hippocampus tissues of a mouse model of tau pathology. Conclusions In summary, downregulation of DNAJB6b increases the insoluble form of tau, while overexpression of DNAJB6b reduces tau aggregation. Moreover, DNAJB6b associates with tau. Therefore, this study reveals that DNAJB6b is a direct sensor for its client tau in the HSP70 folding system in neuronal cells, thus helping to prevent AD

    Effects of high-dose phytoestrogens on circulating cellular microparticles and coagulation function in postmenopausal women

    No full text
    Estrogen in hormone replacement therapy causes homeostatic changes. However, little is known regarding the safety of high-dose phytoestrogen on coagulation and hematological parameters in healthy postmenopausal women. This study evaluated the effects of high-dose soy isoflavone (300 mg/day) on blood pressure, hematological parameters, and coagulation functions including circulating microparticles in healthy postmenopausal women. Methods: The original study is a 2-year prospective, double-blind, placebo-controlled study. In total, 431 postmenopausal women (from 3 medical centers) were randomly assigned to receive either high-dose isoflavone or placebo for 2 years. At baseline, 6 months, 1 year, and 2 years after treatment, blood pressure, body weight, liver function tests, hematological parameters, and lipid profiles were measured. The 1st year blood specimens of 85 cases of 144 eligible participants (from one of the three centers) were analyzed as D-dimer, von Willebrand factor antigen, factor VII, plasminogen activator inhibitor type 1, and circulating cellular microparticles, including the measurement of monocyte, platelet, and endothelial microparticles. Results: In the isoflavone group, after 1 year, the changes in liver function tests, hematological parameters, and coagulation tests were not different from those of the control. Triglyceride levels were significantly lower after 6 months of isoflavone treatment than the placebo group, but the difference did not persist after 1 year. Endothelial microparticles increased steadily in both groups during the 1-year period but the trend was not affected by treatment. Conclusion: The results of the present study indicate that high-dose isoflavone treatment (300 mg/day) does not cause hematological abnormalities or activate coagulation factors

    Two Novel Motifs of <i>Watermelon Silver Mottle Virus</i> NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity

    No full text
    <div><p>The NSs protein of <i>Watermelon silver mottle virus</i> (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in <i>Nicotiana benthamiana</i> plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) (<sup>109</sup>KFTMHNQ<sup>117</sup>), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal <i>β</i>-sheet motif (<sup>397</sup>IYFL<sup>400</sup>) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated <i>Zucchini yellow mosaic virus</i> vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.</p></div
    corecore