61 research outputs found

    Design of Novel S-Shaped Quad-Band Antenna for MedRadio/WMTS/ISM Implantable Biotelemetry Applications

    Get PDF
    A novel S-shaped quad-band planar inverted-F antenna (PIFA) is proposed for implantable biotelemetry in the Medical Device Radiocommunications Service (MedRadio) band (401–406 MHz), Wireless Medical Telemetry Service (WMTS) band (1427–1432 MHz), and industrial, scientific, and medical (ISM) bands (433-434 MHz and 2.4–2.4835 GHz). The proposed antenna reveals compact dimension of 254 mm3 (10×10×2.45 mm3) and is composed of three substrates and a superstrate, which are constructed from an S-shaped radiator (layer 1) and two twin radiators of spiral structures (layer 2 and layer 3). The optimal antenna characteristics were measured in the ground pork skin, and the measured bandwidths are 150 MHz for the MedRadio and ISM bands (433 MHz), 52 MHz for the WMTS band, and 102 MHz for the ISM band (2.4 GHz), respectively. The characteristics of proposed antenna are enough to support the applications of implantable body area networks (BAN) for biotelemetry and can completely cover main available frequency bands of BAN for biotelemetry below 3 GHz

    Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array

    Get PDF
    Conventionally, a pulse taking platform is based on a single sensor, which initiates a feasible method of quantitative pulse diagnosis. The aim of this paper is to implement a pulse taking platform with a tactile array sensor. Three-dimensional wrist pulse signals are constructed, and the length, width, ascending slope, and descending slope are defined following the surface of the wrist pulse. And the pressure waveform of the wrist pulse obtained through proposed pulse-taking platform has the same performance as the single sensor. Finally, the results of a paired samples t-test reveal that the repeatability of the proposal platform is consistent with clinical experience. On the other hand, the results of ANOVA indicate that differences exist among different pulse taking depths, and this result is consistent with clinical experience in traditional Chinese medicine pulse diagnosis (TCMPD). Hence, the proposed pulse taking platform with an array sensor is feasible for quantification in TCMPD

    Miniature RT–PCR system for diagnosis of RNA-based viruses

    Get PDF
    This paper presents an innovative portable chip-based RT–PCR system for amplification of specific nucleic acid and detection of RNA-based viruses. The miniature RT–PCR chip is fabricated using MEMS (Micro-electro-mechanical-system) techniques, and comprises a micro temperature control module and a PDMS (polydimethylsiloxane)-based microfluidic control module. The heating and sensing elements of temperature control module are both made of platinum and are located within the reaction chambers in order to generate a rapid and uniform thermal cycling. The microfluidic control module is capable of automating testing process with minimum human intervention. In this paper, the proposed miniature RT–PCR system is used to amplify and detect two RNA-based viruses, namely dengue virus type-2 and enterovirus 71 (EV 71). The experimental data confirm the ability of the system to perform a two-step RT–PCR process. The developed miniature system provides a crucial tool for the diagnosis of RNA-based viruses

    Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring

    Get PDF
    This paper presents a novel loop antenna with broadband for wireless ocular physiological monitoring (WOPM). The antenna is fabricated on a thin-film poly-para-xylylene C (parylene C) substrate with a small thickness of 11 μm and dimension of π×6.5×6.5 mm2. With the advantage of small size, the proposed antenna is suitable to apply to the soft contact lens and transmit the signal in microelectromechanical Systems (MEMS). Because the pig's eye and human's eye have similar parameters of conductivity and permittivity, the experimental results are obtained by applying the proposed antenna on the pig's eye and cover from 1.54 to 6 GHz for ISM band (2.4 and 5.8 GHz) applications. The measured antenna radiation patterns, antenna gains, and radiation efficiency will be demonstrated in this paper, which are suitable for application of wireless ocular physiological monitoring

    Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor

    Get PDF
    Presented is a single-ended potentiostat topology with a new interface connection between sensor electrodes and potentiostat circuit to avoid deviation of cell voltage and linearly convert the cell current into voltage signal. Additionally, due to the increased harmonic distortion quantity when detecting low-level sensor current, the performance of potentiostat linearity which causes the detectable current and dynamic range to be limited is relatively decreased. Thus, to alleviate these irregularities, a fully-differential potentiostat is designed with a wide output voltage swing compared to single-ended potentiostat. Two proposed potentiostats were implemented using TSMC 0.18-μm CMOS process for biomedical application. Measurement results show that the fully differential potentiostat performs relatively better in terms of linearity when measuring current from 500 pA to 10 uA. Besides, the dynamic range value can reach a value of 86 dB

    An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs)

    Get PDF
    In this work, an asynchronous multi-sensor micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE), and an error correct coder (ECC). To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs

    Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    Get PDF
    A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC), a microcontroller unit (MCU), a graphical user interface (GUI), and a radio frequency (RF) transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA). The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR) greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration

    A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    Get PDF
    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery
    corecore