2,988 research outputs found

    Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations

    Get PDF
    Using density-functional-theory-based ab initio methods, the electronic structure and physical properties of the newly synthesized nitride BeP2N4 with a phenakite-type structure and the predicted high-pressure spinel phase of BeP2N4 are studied in detail. It is shown that both polymorphs are wide band-gap semiconductors with relatively small electron effective masses at the conduction-band minima. The spinel-type phase is more covalently bonded due to the increased number of P-N bonds for P at the octahedral sites. Calculations of mechanical properties indicate that the spinel-type polymorph is a promising superhard material with notably large bulk, shear, and Young’s moduli. Also calculated are the Be K, P K, P L3, and N K edges of the electron energy-loss near-edge structure for both phases. They show marked differences because of the different local environments of the atoms in the two crystalline polymorphs. These differences will be very useful for the experimental identification of the products of high-pressure syntheses targeting the predicted spinel-type phase of BeP2N4

    Pressure-induced polarization reversal in multiferroic YMn2O5YMn_2O_5

    Full text link
    The low-temperature ferroelectric polarization of multiferroic YMn2O5YMn_2O_5 is completely reversed at a critical pressure of 10 kbar and the phase transition from the incommensurate to the commensurate magnetic phase is induced by pressures above 14 kbar. The high-pressure data correlate with thermal expansion measurements indicating a significant lattice strain at the low-temperature transition into the incommensurate phase. The results support the exchange striction model for the ferroelectricity in multiferroic RMn2O5RMn_2O_5 compounds and they show the importance of magnetic frustration as well as the spin-lattice coupling

    A Systematic Framework to Derive N-glycan Biosynthesis Process and the Automated Construction of Glycosylation Networks

    Get PDF
    published_or_final_versio

    Quasinormal Modes of Dirty Black Holes

    Full text link
    Quasinormal mode (QNM) gravitational radiation from black holes is expected to be observed in a few years. A perturbative formula is derived for the shifts in both the real and the imaginary part of the QNM frequencies away from those of an idealized isolated black hole. The formulation provides a tool for understanding how the astrophysical environment surrounding a black hole, e.g., a massive accretion disk, affects the QNM spectrum of gravitational waves. We show, in a simple model, that the perturbed QNM spectrum can have interesting features.Comment: 4 pages. Published in PR

    Unconventional Gravitational Excitation of a Schwarzschild Black Hole

    Get PDF
    Besides the well-known quasinormal modes, the gravitational spectrum of a Schwarzschild black hole also has a continuum part on the negative imaginary frequency axis. The latter is studied numerically for quadrupole waves. The results show unexpected striking behavior near the algebraically special frequency Ω=4i\Omega=-4i. This reveals a pair of unconventional damped modes very near Ω\Omega, confirmed analytically.Comment: REVTeX4, 4pp, 6 EPS figure files. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: better pole placement in Fig. 1. v3: fixed Refs. [9,20]. v4: added context on "area quantum" research; trimmed one Fig.; textual clarification

    High-Order Contamination in the Tail of Gravitational Collapse

    Get PDF
    It is well known that the late-time behaviour of gravitational collapse is {\it dominated} by an inverse power-law decaying tail. We calculate {\it higher-order corrections} to this power-law behaviour in a spherically symmetric gravitational collapse. The dominant ``contamination'' is shown to die off at late times as M2t4ln(t/M)M^2t^{-4}\ln(t/M). This decay rate is much {\it slower} than has been considered so far. It implies, for instance, that an `exact' (numerical) determination of the power index to within 1\sim 1 % requires extremely long integration times of order 104M10^4 M. We show that the leading order fingerprint of the black-hole electric {\it charge} is of order Q2t4Q^2t^{-4}.Comment: 12 pages, 2 figure

    Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells

    Get PDF
    Protein array technology is a powerful platform for the simultaneous determination of the expression levels of a number of proteins as well as post-translational modifications such as phosphorylation. Here, we screen and report for the first time, the dominant signaling cascades and apoptotic mediators during the course of cadmium (Cd)-induced cytotoxicity in human bronchial epithelial cells (BEAS-2B) by antibody array analyses. Proteins from control and Cd-treated cells were captured on Proteome Profiler™ Arrays for the parallel determination of the relative levels of protein phosphorylation and proteins associated with apoptosis. Our results indicated that the p38 MAPK- and JNK-related signal transduction pathways were dramatically activated by Cd treatment. Cd potently stimulates the phosphorylations of p38α (MAPK14), JNK1/2 (MAPK8/9), and JUN; while the phosphorylations of Akt1, ERK1/2 (MAPK3/1), GSK3β, and mTOR were suppressed. Moreover, there was an induction of proapoptotic protein BAX, release of cytochrome c (CYCS) from mitochondria, activation of caspase-3/9 (CASP3/9); as well as decreased expression of cell cycle checkpoint proteins (TP53, p21, and p27) and several inhibitors of apoptosis proteins (IAPs) [including cIAP-1/2 (BIRC2/3), XIAP (BIRC4), and survivin (BIRC5)]. Pretreatment of cells with the thiol antioxidant glutathione or p38 MAPK/JNK inhibitors before Cd treatment effectively abrogated ROS activation of p38 MAPK/JNK pathways and apoptosis-related proteins. Taken together, our results demonstrate that Cd causes oxidative stress-induced apoptosis; and the p38 MAPK/JNK and mitochondrial pathways are more importantly participated for signal transduction and the induction of apoptosis in Cd-exposed human lung cells.published_or_final_versio

    SiC/Al4SiC4-Based Heterostructure Transistors

    Get PDF
    A wide-band-gap (WBG) SiC/Al4SiC4 heterostructure transistor with a gate length of 5 μm is designed using a ternary carbide of Al4SiC4, and its performance is simulated by Silvaco Atlas. The simulations use a mixture of parameters obtained from ensemble Monte Carlo simulations, DFT calculations, and experimental data. The 5 μm gate length transistor is then laterally scaled to 2 and 1 μm gate length devices. The 5 μm gate length SiC/Al4SiC4 heterostructure transistor delivers a maximum drain current of 168 mA/mm, which increases to 244 mA/mm and 350 mA/mm for gate lengths of 2 and 1 μm, respectively. The device breakdown voltage is 59.0 V, which reduces to 31.0 V and to 18.0 V in the scaled 2 μm and the 1 μm gate length transistors, respectively. The scaled down 1 μm gate length device switches faster thanks to a higher transconductance of 65.1 mS/mm compared to only 1.69 mS/mm for the 5 μm gate length device. Finally, the subthreshold slope of the scaled devices is 197.3, 97.6, and 96.1 mV/dec for gate lengths of 5, 2, and 1 μm, respectively
    corecore