4,597 research outputs found
Opportunistic Uses of the Traditional School Day Through Student Examination of Fitbit Activity Tracker Data
In large part due to the highly prescribed nature of the typical school day for children, efforts to design new interactions with technology have often focused on less-structured after-school clubs and other out-of-school environments. We argue that while the school day imposes serious restrictions, school routines can and should be opportunistically leveraged by designers and by youth. Specifically, wearable activity tracking devices open some new avenues for opportunistic collection of and reflection on data from the school day. To demonstrate this, we present two cases from an elementary statistics classroom unit we designed that intentionally integrated wearable activity trackers and childcreated data visualizations. The first case involves a group of students comparing favored recess activities to determine which was more physically demanding. The second case is of a student who took advantage of her knowledge of teachers’ school day routines to test the reliability of a Fitbit activity tracker against a commercial mobile app
Passive Scalar: Scaling Exponents and Realizability
An isotropic passive scalar field advected by a rapidly-varying velocity
field is studied. The tail of the probability distribution for
the difference in across an inertial-range distance is found
to be Gaussian. Scaling exponents of moments of increase as
or faster at large order , if a mean dissipation conditioned on is
a nondecreasing function of . The computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of
gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4
pages) with 2 postscript figures. Send email to [email protected]
Extraction of Plumes in Turbulent Thermal Convection
We present a scheme to extract information about plumes, a prominent coherent
structure in turbulent thermal convection, from simultaneous local velocity and
temperature measurements. Using this scheme, we study the temperature
dependence of the plume velocity and understand the results using the equations
of motion. We further obtain the average local heat flux in the vertical
direction at the cell center. Our result shows that heat is not mainly
transported through the central region but instead through the regions near the
sidewalls of the convection cell.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
Turbulent Drag Reduction by Flexible and Rodlike Polymers: Crossover Effects at Small Concentrations
Drag reduction by polymers is bounded between two universal asymptotes, the
von-K\'arm\'an log-law of the law and the Maximum Drag Reduction (MDR)
asymptote. It is theoretically understood why the MDR asymptote is universal,
independent of whether the polymers are flexible or rodlike. The cross-over
behavior from the Newtonian von-K\'arm\'an log-law to the MDR is however not
universal, showing different characteristics for flexible and rodlike polymers.
In this paper we provide a theory for this cross-over phenomenology.Comment: 5 pages, 4 figures, submitted to Physical Review
The Energy of the Gamma Metric in the M{\o}ller Prescription
We obtain the energy distribution of the gamma metric using the
energy-momentum complex of M{\o}ller. The result is the same as obtained by
Virbhadra in the Weinberg prescription
Ranking Spaces for Predicting Human Movement in an Urban Environment
A city can be topologically represented as a connectivity graph, consisting
of nodes representing individual spaces and links if the corresponding spaces
are intersected. It turns out in the space syntax literature that some defined
topological metrics can capture human movement rates in individual spaces. In
other words, the topological metrics are significantly correlated to human
movement rates, and individual spaces can be ranked by the metrics for
predicting human movement. However, this correlation has never been well
justified. In this paper, we study the same issue by applying the weighted
PageRank algorithm to the connectivity graph or space-space topology for
ranking the individual spaces, and find surprisingly that (1) the PageRank
scores are better correlated to human movement rates than the space syntax
metrics, and (2) the underlying space-space topology demonstrates small world
and scale free properties. The findings provide a novel justification as to why
space syntax, or topological analysis in general, can be used to predict human
movement. We further conjecture that this kind of analysis is no more than
predicting a drunkard's walking on a small world and scale free network.
Keywords: Space syntax, topological analysis of networks, small world, scale
free, human movement, and PageRankComment: 11 pages, 5 figures, and 2 tables, English corrections from version 1
to version 2, major changes in the section of introduction from version 2 to
Late Time Tail of Wave Propagation on Curved Spacetime
The late time behavior of waves propagating on a general curved spacetime is
studied. The late time tail is not necessarily an inverse power of time. Our
work extends, places in context, and provides understanding for the known
results for the Schwarzschild spacetime. Analytic and numerical results are in
excellent agreement.Comment: 11 pages, WUGRAV-94-1
Cauchy-characteristic Evolution of Einstein-Klein-Gordon Systems: The Black Hole Regime
The Cauchy+characteristic matching (CCM) problem for the scalar wave equation
is investigated in the background geometry of a Schwarzschild black hole.
Previously reported work developed the CCM framework for the coupled
Einstein-Klein-Gordon system of equations, assuming a regular center of
symmetry. Here, the time evolution after the formation of a black hole is
pursued, using a CCM formulation of the governing equations perturbed around
the Schwarzschild background. An extension of the matching scheme allows for
arbitrary matching boundary motion across the coordinate grid. As a proof of
concept, the late time behavior of the dynamics of the scalar field is
explored. The power-law tails in both the time-like and null infinity limits
are verified.Comment: To appear in Phys. Rev. D, 9 pages, revtex, 5 figures available at
http://www.astro.psu.edu/users/nr/preprints.htm
Parallel identification of O-GlcNAc-modified proteins from cell lysates
We report a new strategy for the parallel identification of O-GlcNAc-glycosylated proteins from cell lysates. The approach permits specific proteins of interest to be rapidly interrogated for the modification in any tissue or cell type and can be extended to peptides to facilitate the mapping of glycosylation sites. As an illustration of the approach, we identified four new O-GlcNAc-glycosylated proteins of low cellular abundance (c-Fos, c-Jun, ATF-1, and CBP) and two short regions of glycosylation in the enzyme O-GlcNAc transferase (OGT). The ability to target specific proteins across various tissue or cell types complements emerging proteomic technologies and should advance our understanding of this important posttranslational modification
- …