481 research outputs found
Helicobacter pylori infection and gastric cancer
Gastric cancer is the second most common fatal malignant neoplasm in the world. In mainland China, gastric cancer is now the second most common malignant neoplasm while in Hong Kong, the mortality rate ranked fourth of all cancers in 1995. Dietary factors seem to be involved in gastric carcinogenesis, and beta carotene, selenium, and vitamin E (tocopherols) have been shown to help reduce gastric cancer mortality. Prospective case-control studies have shown an increased risk for the development of gastric cancer of between 2.8 and 6.0 among carriers of Helicobacter pylori. In addition, cagA-positive strains of Helicobacter pylori have been found to be associated with gastric cancer and duodenal ulceration. The exact role of Helicobacter pylori in gastric carcinogenesis is still being investigated. Helicobacter pylori eradication programmes to help prevent gastric cancer are being conducted in China and other parts of the world. In high-risk areas such as China, a combination approach that includes Helicobacter pylori eradication and dietary supplementation may be necessary.published_or_final_versio
The prevalence of Helicobacter pylori carrier rates among the healthy blood donors in Hong Kong
A serological assay was employed in this study to assess the Helicobacter pylori carrier rates among the healthy blood donors (all Chinese) in Hong Kong. The commercial kit for detecting anti-H. pylori antibody titres was found to have a sensitivity of 84% and a specificity of 85% by using the histochemistry results as the gold standard. Elevated anti-H. pylori antibody titres were observed in 42.4%, 53.2% and 72.2% of the healthy blood donors of age below 20, 21 to 30 and 31 to 40 years respectively. This indicates a steady rise of H. pylori carrier rates with age. The overall H. pylori prevalence rate was 54.9%. The positivity of H. pylori in teenagers appeared to be double that reported in Western countries. Whether this is related to the younger age of peptic ulcer presentation in Hong Kong compared with Western countries is not known. However, there was no significant difference of the H. pylori rates between males and females of each age group although a male predominance has been well established for peptic ulcer in Hong Kong.published_or_final_versio
Wild-type p53-dependent upregulation of c-myc mRNA is associated with indomethacin induced apoptosis in human gastric cancer cells
published_or_final_versio
Message from general co-chairs and program co-chairs
On the cover - Computational Sciences And Optimization: Theoretical Development And Engineering Practicepublished_or_final_versionThe 3rd International Joint Conference On Computational Sciences And Optimization (Cso 2010), Huangshan, Anhui, China , 28-31 May 2010. In Computational Sciences And Optimization: Theoretical Development And Engineering Practice, 2010, v. 1, p. 15-1
Age is a predicting factor for the association between CagA positive Helicobacter pylori (Hp) infection and serum pepsinogen I:II ratio in a high gastric cancer risk region in China
published_or_final_versio
Characterization of the Interaction and Cross-Regulation of Three Mycobacterium tuberculosis RelBE Modules
RelBE represents a typical bacterial toxin-antitoxin (TA) system. Mycobacterium tuberculosis H37Rv, the pathogen responsible for human tuberculosis, contains three RelBE-like modules, RelBE, RelFG, and RelJK, which are at least partly expressed in human macrophages during infection. RelBE modules appear to be autoregulated in an atypical manner compared to other TA systems; however, the molecular mechanisms and potential interactions between different RelBE modules remain to be elucidated. In the present study, we characterized the interaction and cross-regulation of these Rel toxin-antitoxin modules from this unique pathogen. The physical interactions between the three pairs of RelBE proteins were confirmed and the DNA-binding domain recognized by three RelBE-like pairs and domain structure characteristics were described. The three RelE-like proteins physically interacted with the same RelB-like protein, and could conditionally regulate its binding with promoter DNA. The RelBE-like modules exerted complex cross-regulation effects on mycobacterial growth. The relB antitoxin gene could replace relF in cross-neutralizing the relG toxin gene. Conversely, relF enhanced the toxicity of the relE toxin gene, while relB increased the toxicity of relK. This is the first report of interactions between different pairs of RelBE modules of M. tuberculosis
Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models
BACKGROUND: Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-β1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. CONCLUSIONS/SIGNIFICANCE: These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-β1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy
The Structural Features of Trask That Mediate Its Anti-Adhesive Functions
Trask/CDCP1 is a transmembrane protein with a large extracellular and small intracellular domains. The intracellular domain (ICD) undergoes tyrosine phosphorylation by Src kinases during anchorage loss and, when phosphorylated, Trask functions to inhibit cell adhesion. The extracellular domain (ECD) undergoes proteolytic cleavage by serine proteases, although the functional significance of this remains unknown. There is conflicting evidence regarding whether it functions to signal the phosphorylation of the ICD. To better define the structural determinants that mediate the anti-adhesive functions of Trask, we generated a series of deletion mutants of Trask and expressed them in tet-inducible cell models to define the structural elements involved in cell adhesion signaling. We find that the ECD is dispensable for the phosphorylation of the ICD or for the inhibition of cell adhesion. The anti-adhesive functions of Trask are entirely embodied within its ICD and are specifically due to tyrosine phosphorylation of the ICD as this function is completely lost in a phosphorylation-defective tyrosine-phenylalanine mutant. Both full length and cleaved ECDs are fully capable of phosphorylation and undergo phosphorylation during anchorage loss and cleavage is not an upstream signal for ICD phosphorylation. These data establish that the anti-adhesive functions of Trask are mediated entirely through its tyrosine phosphorylation. It remains to be defined what role, if any, the Trask ECD plays in its adhesion functions
GRP78 Knockdown Enhances Apoptosis via the Down-Regulation of Oxidative Stress and Akt Pathway after Epirubicin Treatment in Colon Cancer DLD-1 Cells
INTRODUCTION: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3β, as well as downstream targets of β-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. CONCLUSIONS: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells
- …