4,812 research outputs found

    Ab initio Studies of the Possible Magnetism in BN Sheet by Non-magnetic Impurities and Vacancies

    Full text link
    We performed first-principles calculations to investigate the possible magnetism induced by the different concentrations of non-magnetic impurities and vacancies in BN sheet. The atoms of Be, B, C, N, O, Al and Si are used to replace either B or N in the systems as impurities. We discussed the changes in density of states as well as the extent of the spatial distributions of the defect states, the possible formation of magnetic moments, the magnitude of the magnetization energies and finally the exchange energies due to the presence of these defects. It is shown that the magnetization energies tend to increase as the concentrations of the defects decreases in most of the defect systems which implies a definite preference of finite magnetic moments. The calculated exchange energies are in general tiny but not completely insignificant for two of the studied defect systems, i.e. one with O impurities for N and the other with B vacancies.Comment: 8 pages, 10 figures, submitted to Phys. Rev.

    A study of network-based kernel methods on protein-protein interaction for protein functions prediction

    Get PDF
    Predicting protein functions is an important issue in the post-genomic era. In this paper, we studied several network-based kernels including Local Linear Embedding (LLE) kernel method, Diffusion kernel and Laplacian Kernel to uncover the relationship between proteins functions and Protein-Protein Interactions (PPI). We first construct kernels based on PPI networks, we then apply Support Vector Machine (SVM) techniques to classify proteins into different functional groups. 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chisquare methods. Finally we made predictions of functions of some unknown genes and verified the preciseness of our prediction in part by the information of other data source.postprintThe 3rd International Symposium on Optimization and Systems Biology (OSB 2009), Zhangjiajie, China, 20-22 September 2009. In Lecture Notes in Operations Research, 2009, v. 11, p. 25-3

    Passive Scalar: Scaling Exponents and Realizability

    Get PDF
    An isotropic passive scalar field TT advected by a rapidly-varying velocity field is studied. The tail of the probability distribution P(θ,r)P(\theta,r) for the difference θ\theta in TT across an inertial-range distance rr is found to be Gaussian. Scaling exponents of moments of θ\theta increase as n\sqrt{n} or faster at large order nn, if a mean dissipation conditioned on θ\theta is a nondecreasing function of θ|\theta|. The P(θ,r)P(\theta,r) computed numerically under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4 pages) with 2 postscript figures. Send email to [email protected]

    Metabolite biomarker discovery for metabolic diseases by flux analysis

    Get PDF
    Metabolites can serve as biomarkers and their identification has significant importance in the study of biochemical reaction and signalling networks. Incorporating metabolic and gene expression data to reveal biochemical networks is a considerable challenge, which attracts a lot of attention in recent research. In this paper, we propose a promising approach to identify metabolic biomarkers through integrating available biomedical data and disease-specific gene expression data. A Linear Programming (LP) based method is then utilized to determine flux variability intervals, therefore enabling the analysis of significant metabolic reactions. A statistical approach is also presented to uncover these metabolites. The identified metabolites are then verified by comparing with the results in the existing literature. The proposed approach here can also be applied to the discovery of potential novel biomarkers. © 2012 IEEE.published_or_final_versio

    Divergence and Shannon information in genomes

    Full text link
    Shannon information (SI) and its special case, divergence, are defined for a DNA sequence in terms of probabilities of chemical words in the sequence and are computed for a set of complete genomes highly diverse in length and composition. We find the following: SI (but not divergence) is inversely proportional to sequence length for a random sequence but is length-independent for genomes; the genomic SI is always greater and, for shorter words and longer sequences, hundreds to thousands times greater than the SI in a random sequence whose length and composition match those of the genome; genomic SIs appear to have word-length dependent universal values. The universality is inferred to be an evolution footprint of a universal mode for genome growth.Comment: 4 pages, 3 tables, 2 figure

    High-Order Contamination in the Tail of Gravitational Collapse

    Get PDF
    It is well known that the late-time behaviour of gravitational collapse is {\it dominated} by an inverse power-law decaying tail. We calculate {\it higher-order corrections} to this power-law behaviour in a spherically symmetric gravitational collapse. The dominant ``contamination'' is shown to die off at late times as M2t4ln(t/M)M^2t^{-4}\ln(t/M). This decay rate is much {\it slower} than has been considered so far. It implies, for instance, that an `exact' (numerical) determination of the power index to within 1\sim 1 % requires extremely long integration times of order 104M10^4 M. We show that the leading order fingerprint of the black-hole electric {\it charge} is of order Q2t4Q^2t^{-4}.Comment: 12 pages, 2 figure

    Discovery of metabolite biomarkers: flux analysis and reaction-reaction network approach

    Get PDF
    published_or_final_versio

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential
    corecore