18 research outputs found
Synthesis of Heterogeneous Li4Ti5O12 Nanostructured Anodes with Long-Term Cycle Stability
The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C
Inhibitor of striate conditionally suppresses cell proliferation in variegated maize
Since the work done by R.A. Emerson in the 1930s, Inhibitor of striate (Isr) has been recognized as a dose-dependent genetic modifier of variegation in chlorotic leaf striping mutants of maize such as striate2 (sr2). We have shown that Isr specifically inhibits proliferation and-differentiation of plastid defective cells in sr2 mutants. Leaf narrowing is due to loss of intermediate veins antiground tissue located a leaf margins, and the few remaining plastid defective cells are of irregular size and aberrant organization. The Isr gene has been cloned by targeted transposon tagging. Isr mRNA is expressed throughout young leaves, but Isr chimeras indicate that the expression of Isr at leaf margins is sufficient to suppress both the lateral expansion of sr2 leaves and the extent of striping. Isr protein appears to encode a chloroplast protein with sequence similarity to a family of bacterial phosphatases involved in carbon catabolite repression or in carbon metabolism. We propose that the action of Isr in nuclear and plastid communication could be triggered by carbon stress.close6
Inhibitor of striate conditionally suppresses cell proliferation in variegated maize
Since the work done by R.A. Emerson in the 1930s, Inhibitor of striate (Isr) has been recognized as a dose-dependent genetic modifier of variegation in chlorotic leaf striping mutants of maize such as striate2 (sr2). We have shown that Isr specifically inhibits proliferation and differentiation of plastid defective cells in sr2 mutants. Leaf narrowing is due to loss of intermediate veins and ground tissue located at leaf margins, and the few remaining plastid defective cells are of irregular size and aberrant organization. The Isr gene has been cloned by targeted transposon tagging. Isr mRNA is expressed throughout young leaves, but Isr chimeras indicate that the expression of Isr at leaf margins is sufficient to suppress both the lateral expansion of sr2 leaves and the extent of striping. Isr protein appears to encode a chloroplast protein with sequence similarity to a family of bacterial phosphatases involved in carbon catabolite repression or in carbon metabolism. We propose that the action of Isr in nuclear and plastid communication could be triggered by carbon stress
Minimally Invasive Transforaminal Lumbar Interbody Fusion with Unilateral Pedicle Screw Fixation: Comparison between Primary and Revision Surgery
Minimally invasive surgery with a transforaminal lumbar interbody fusion (MIS TLIF) is an important minimally invasive fusion technique for the lumbar spine. Lumbar spine reoperation is challenging and is thought to have greater complication risks. The purpose of this study was to compare MIS TLIF with unilateral screw fixation perioperative results between primary and revision surgeries. This was a prospective study that included 46 patients who underwent MIS TLIF with unilateral pedicle screw. The patients were divided into two groups, primary and revision MIS TLIF, to compare perioperative results and complications. The two groups were similar in age, sex, and level of operation, and were not significantly different in the length of follow-up or clinical results. Although dural tears were more common with the revision group (primary 1; revision 4), operation time, blood loss, total perioperative complication, and fusion rates were not significantly different between the two groups. Both groups showed substantial improvements in VAS and ODI scores one year after surgical treatment. Revision MIS TLIF performed by an experienced surgeon does not necessarily increase the risk of perioperative complication compared with primary surgery. MIS TLIF with unilateral pedicle screw fixation is a valuable option for revision lumbar surgery
Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system
In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analysed in order to evaluate the gene-tagging efficiency. The 3' end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3' end of the Ds in rice. Nearly 80% of Ds elements were excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds which underwent secondary transposition in the later cultures. Eight per cent of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybridization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds-mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a large scale mutagenesis using a heterologous Ac/Ds family in rice.close10310
Germinal Virus Vector WDV (Wheat Dwarf Virus)-Mediated Multiple Insertions of a Maize transposon, Ds (Dissociation), in Rice
Wheat dwarf virus (WDV) is a monocot-infecting geminivirus that replicates in infected tissue as double-stranded DNA. We evaluated whether the WDV vector system bearing Ds could be used as an effective insertional mutagen in rice. Molecular data showed that Ds was excised from WDV vectors once the WDV-carrying DS (WDV::Ds) and the genomic Ac vector were co-introduced into rice calli. Mature To and T1 transgenic plants were analyzed for the distribution and inheritance of Ds inserts. Southern analysis indicated that the Ds elements excised from WDV vectors were stably inserted into genomes. The number of transposed Ds ranged from zero to three copies, among independent transformants. Meanwhile, untransposed Ds (WDV::DS) were present in multiple-copies in genomes. Southern analysis of the selfed progeny of TO plants demonstrated that most WDV::Ds were co-segregated among sibling. This indicated that these elements were integrated into the same single loci. However, a few Ds were found to segregate independently from the majority of Ds. In this report, we discuss the efficiency of WDV vectors in generating multicopy Ds in rice genomes.clos
A point mutation in a plant calmodulin is responsible for its inhibition of nitric-oxide synthase
The calcium/calmodulin-dependent activation of nitric-oxide synthase (NOS) and its production of nitric oxide (NO) play a key regulatory role in plant and animal cell function. SCaM-1 is a plant calmodulin (CaM) isoform that is 91% identical to mammalian CaM (wild type CaM (wtCaM)) and a selective competitive antagonist of NOS (Cho, M. J., Vaghy, P. L., Kondo, R., Lee, S. H., Davis, J. P., Rehl, R., Heo, W. D., and Johnson, J. D. (1998) Biochemistry 37, 15593-15597), We have used site-directed mutagenesis to show that a point mutation, involving the substitution of valine for methionine at position 144, is responsible for SCaM-1's inhibition of mammalian NOS. An M144V mutation in wild type CaM produced a mutant (M144V) which exhibited nearly identical inhibition of NOS's NO production and NADPH oxidation, with a similar K-i (similar to 15 nM) as SCaM-1, A V144M back mutation in SCaM-1 significantly restored its ability to activate NOS's catalytic functions. The length of the hydrophobic amino acid side chain at position 144 appears to be critical for NOS activation, since M144L and M144F activated NOS while M144V and M144C did not. Despite their competitive antagonism of NOS, M144V, like SCaM-1, exhibited a similar dose-dependent activation of phosphodiesterase and calcineurin as wtCaM. SCaM-1 and M144V produced greater inhibition of NOS's oxygenase domain function (NO production) than its reductase domain functions (NADPH oxidation and cytochrome c reduction). Thus, CaM's methionine 144 plays a critical role the activation of NOS, presumably by influencing the function of NOS's oxygenase domain.close333