1,382 research outputs found

    Behaviour of non-donor specific antibodies during rapid re-synthesis of donor specific HLA antibodies after antibody incompatible renal transplantation

    Get PDF
    Background: HLA directed antibodies play an important role in acute and chronic allograft rejection. During viral infection of a patient with HLA antibodies, the HLA antibody levels may rise even though there is no new immunization with antigen. However it is not known whether the converse occurs, and whether changes on non-donor specific antibodies are associated with any outcomes following HLA antibody incompatible renal transplantation. Methods: 55 patients, 31 women and 24 men, who underwent HLAi renal transplant in our center from September 2005 to September 2010 were included in the studies. We analysed the data using two different approaches, based on; i) DSA levels and ii) rejection episode post transplant. HLA antibody levels were measured during the early post transplant period and corresponding CMV, VZV and Anti-HBs IgG antibody levels and blood group IgG, IgM and IgA antibodies were quantified. Results: Despite a significant DSA antibody rise no significant non-donor specific HLA antibody, viral or blood group antibody rise was found. In rejection episode analyses, multiple logistic regression modelling showed that change in the DSA was significantly associated with rejection (p = 0.002), even when adjusted for other antibody levels. No other antibody levels were predictive of rejection. Increase in DSA from pre treatment to a post transplant peak of 1000 was equivalent to an increased chance of rejection with an odds ratio of 1.47 (1.08, 2.00). Conclusion: In spite of increases or decreases in the DSA levels, there were no changes in the viral or the blood group antibodies in these patients. Thus the DSA rise is specific in contrast to the viral, blood group or third party antibodies post transplantation. Increases in the DSA post transplant in comparison to pre-treatment are strongly associated with occurrence of rejection

    Eigen model as a quantum spin chain: exact dynamics

    Full text link
    We map Eigen model of biological evolution [Naturwissenschaften {\bf 58}, 465 (1971)] into a one-dimensional quantum spin model with non-Hermitean Hamiltonian. Based on such a connection, we derive exact relaxation periods for the Eigen model to approach static energy landscape from various initial conditions. We also study a simple case of dynamic fitness function.Comment: 10 pages. Physical Revew E vol. 69, in press (2004

    Potential for allocative harm in an environmental justice data tool

    Full text link
    Neighborhood-level screening algorithms are increasingly being deployed to inform policy decisions. We evaluate one such algorithm, CalEnviroScreen - designed to promote environmental justice and used to guide hundreds of millions of dollars in public funding annually - assessing its potential for allocative harm. We observe the model to be sensitive to subjective model decisions, with 16% of tracts potentially changing designation, as well as financially consequential, estimating the effect of its positive designations as a 104% (62-145%) increase in funding, equivalent to \$2.08 billion (\$1.56-2.41 billion) over four years. We also observe allocative tradeoffs and susceptibility to manipulation, raising ethical concerns. We recommend incorporating sensitivity analyses to mitigate allocative harm and accountability mechanisms to prevent misuse

    Runaway evaporation for optically dressed atoms

    Get PDF
    Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a diminution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses

    Unsaturation of vapour pressure inside leaves of two conifer species

    Get PDF
    Stomatal conductance (gs) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (ei) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far ei cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotope compositions of CO2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, ei routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of ei from saturation caused significant biases in calculations of gs and the intercellular CO2 concentration. Our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.We thank Meisha Holloway-Phillips, Alex Cheesman, Hilary Stuart-Williams, and Michael Roderick for helpful discussions and comments on the manuscript; and Lily Cohen, Adam Collins, and Turin Dickman for measurement and field assistance. This research was supported by Australian Research Council Discovery Grants DP1097276 and DP150100588

    A Flexible Proximity Sensor Fully Fabricated by Inkjet Printing

    Get PDF
    A flexible proximity sensor fully fabricated by inkjet printing is proposed in this paper. The flexible proximity sensor is composed of a ZnO layer sandwiched in between a flexible aluminum sheet and a web-shaped top electrode layer. The flexible aluminum sheet serves as the bottom electrode. The material of the top electrode layer is nano silver. Both the ZnO and top electrode layers are deposited by inkjet printing. The fully inkjet printing process possesses the advantages of direct patterning and low-cost. It does not require photolithography and etching processes since the pattern is directly printed on the flexible aluminum sheet. The prototype demonstrates that the presented flexible sensor is sensitive to the human body. It may be applied to proximity sensing or thermal eradiation sensing

    3D-printed Franz type diffusion cells

    Get PDF
    Franz cells are routinely used to measure in vitro skin permeation of actives and must be inert to the permeant under study. The aim of the present work was to develop and manufacture transparent Franz-type diffusion cells using 3D printing and test these using a range of model active compounds. The study also aims to identify the critical 3D printing parameters necessary for the process including object design, choice of printing resin, printout curing and post-curing settings and introduction of model coatings. Transparent Franz cells were constructed using an online computer aided design program and reproduced with different stereolithography 3D printers. The two acrylate-based resins used for the fabrication process were a commercially available product and a polymer synthesised in-house. Comparative studies between glass and 3D printed Franz cells were conducted with selected model actives: terbinafine hydrochloride (TBF), niacinamide (NIA), diclofenac free acid (DFA) and n-methyl paraben (MPB). In preliminary studies, MPB showed the lowest recovery when exposed to the receptor compartment of 3D printed cells. Consequently, in vitro permeation studies were carried out using only MPB with polydimethylsiloxane (PDMS) membrane. A decrease in the amounts of selected compounds was observed for transparent 3D printed Franz cells compared to glass cells. MPB showed the lowest recovery (53.8 ± 13.1%) when compared with NIA (74.9 ± 4.0%), TBF (81.5 ± 12.0%) and DFA (90.2 ± 12.9%) after 72 h. Permeation studies conducted using 3D printed transparent cells with PDMS membrane also showed a decrease in MPB recovery of 51.4 ± 3.7% for the commercial resin and 94.4 ± 3.5% for the polymer synthesised in-house, when compared to glass cells. Although hydrophobic coatings were subsequently applied to the 3D printed cells the same reduction in MPB concentration was observed in the receptor solution. Transparent Franz cells were successfully prepared using 3D printing and were observed to be robust and leak-proof. There are few resins currently available for preparation of transparent materials and incompatibilities between the actives investigated and the 3D printed cells were evident. Hydrophobic coatings applied as barriers to the printed materials did not prevent these interactions. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.
    corecore