12 research outputs found

    Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    Get PDF
    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes’ inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(IV) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(IV)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(IV)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(IV)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response

    Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    No full text
    Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM), comparable to that of acetylcholine (Ki = 59 µM). Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions

    Synthesis, Biological Evaluation and Molecular Modelling of 2′-Hydroxychalcones as Acetylcholinesterase Inhibitors

    No full text
    A series of 2′-hydroxy- and 2′-hydroxy-4′,6′-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40–85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE

    Phosphodiesterase-5 inhibitors and their analogues as adulterants of herbal and food products: analysis of the Malaysian market, 2014–16

    No full text
    <p>Adulteration of herbal health supplements with phosphodiesterase-5 (PDE-5) inhibitors and their analogues is becoming a worldwide problem. The aim of this study was to investigate herbal and food products sold in the Malaysian market for the presence of these adulterants. Sixty-two products that claim to enhance men’s sexual health were sampled between April 2014 and April 2016. These products included unregistered products seized by the Pharmacy Enforcement Division of the Ministry of Health (<i>n</i> = 39), products sent to the National Pharmaceutical Regulatory Agency for pre-registration testing (<i>n</i> = 9) and products investigated under the post-registration market surveillance programme (<i>n</i> = 14). The products were tested against an in-house spectral library consisting of 61 PDE-5 inhibitors and analogues using a validated liquid chromatography-mass spectrometry ion-trap-time-of-flight (LC-MS IT-TOF) method. Thirty-two (82%) of the unregistered products and two (14%) of the registered products were found to be adulterated with at least one PDE-5 inhibitor or analogue, while none of the pre-registration products contained adulterants. A total of 16 different adulterants were detected and 36% of the adulterated products contained a mixture of two or more adulterants. This study has demonstrated that the adulteration of unregistered herbal products in the Malaysian market is an alarming issue that needs to be urgently addressed by the relevant authorities.</p

    In vivo biodistribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes.

    No full text
    Carbon nanotubes (CNTs) are promising drug delivery systems due to their external functionalizable surface and their hollowed cavity that can encapsulate several bioactive molecules. In this study, the chemotherapeutic drug cisplatin or an inert platinum(IV) complex were entrapped inside functionalized-multi-walled-CNTs and intravenously injected into mice to investigate the influence of CNTs on the biodistribution of Pt-based molecules. The platinum levels in vital organs suggested that functionalized-CNTs did not affect cisplatin distribution, while they significantly enhanced the accumulation of Pt(IV) sample in some tissues (e.g. in the lungs, suggesting their potential application in lung cancer therapy) and reduced both kidney and liver accumulation (thus decreasing eventual nephrotoxicity, a typical side effect of cisplatin). Concurrently, CNTs did not induce any intrinsic abnormal immune response or inflammation, as confirmed by normal cytokine levels and histological evaluations. Therefore, functionalized nanotubes represent an efficient nano-carrier to improve accumulation of Pt species in targeted tissues/organs. From the clinical editor: In this preclinical study functionalized carbon nanotubes are reported to be safe and efficient for targeted delivery of platinum-containing compounds in rodents. Approaches like this may improve the treatment of specific cancers, since platinum based chemotherapies are commonly used, yet limited by toxicity and relatively poor target tissue concentration.journal articleresearch support, non-u.s. gov't2014 Oct2014 01 30importe

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore