14,275 research outputs found
Isospin mode splitting and mixing in asymmetric nuclear matter
We estimate exclusive density and asymmetry parameter dependent dispersion
relations of various charged states of pions in asymmetric nuclear matter. The
possibility of matter induced mixing of with is clearly exposed
with the further mass modification of meson due to mixing. Asymmetry
driven mass splitting and mixing amplitude are of the same order as the
corresponding values in vacuum. Closed form analytic results for the mass
shifts and dispersion relations with and without mixing are presented.
Furthermore, we discuss the sensitivity of our results on the scalar mean field
within the framework of Quantum Hadrodynamics.Comment: 8 pages, 4 Figure
A new broken U(1)-symmetry in extreme type-II superconductors
A phase transition within the molten phase of the Abrikosov vortex system
without disorder in extreme type-II superconductors is found via large-scale
Monte-Carlo simulations. It involves breaking a U(1)-symmetry, and has a
zero-field counterpart, unlike vortex lattice melting. Its hallmark is the loss
of number-conservation of connected vortex paths threading the entire system
{\it in any direction}, driving the vortex line tension to zero. This tension
plays the role of a generalized ``stiffness'' of the vortex liquid, and serves
as a probe of the loss of order at the transition, where a weak specific heat
anomaly is found.Comment: 5 pages, 3 figure
Critical velocity for superfluid flow across the BEC-BCS crossover
Critical velocities have been observed in an ultracold superfluid Fermi gas
throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at
unitarity demonstrates that superfluidity is most robust for resonant atomic
interactions. Critical velocities were determined from the abrupt onset of
dissipation when the velocity of a moving one dimensional optical lattice was
varied. The dependence of the critical velocity on lattice depth and on the
inhomogeneous density profile was studied
Quantum dynamics in photonic crystals
Employing a recently developed method that is numerically accurate within a
model space simulating the real-time dynamics of few-body systems interacting
with macroscopic environmental quantum fields, we analyze the full dynamics of
an atomic system coupled to a continuum light-field with a gapped spectral
density. This is a situation encountered, for example, in the radiation field
in a photonic crystal, whose analysis has been so far been confined to limiting
cases due to the lack of suitable numerical techniques. We show that both
atomic population and coherence dynamics can drastically deviate from the
results predicted when using the rotating wave approximation, particularly in
the strong coupling regime. Experimental conditions required to observe these
corrections are also discussed.Comment: 5 pages, 2 figures Updated with published versio
- …