14,275 research outputs found

    Isospin mode splitting and mixing in asymmetric nuclear matter

    Get PDF
    We estimate exclusive density and asymmetry parameter dependent dispersion relations of various charged states of pions in asymmetric nuclear matter. The possibility of matter induced mixing of π0\pi^0 with η\eta is clearly exposed with the further mass modification of π0\pi^0 meson due to mixing. Asymmetry driven mass splitting and mixing amplitude are of the same order as the corresponding values in vacuum. Closed form analytic results for the mass shifts and dispersion relations with and without mixing are presented. Furthermore, we discuss the sensitivity of our results on the scalar mean field within the framework of Quantum Hadrodynamics.Comment: 8 pages, 4 Figure

    A new broken U(1)-symmetry in extreme type-II superconductors

    Full text link
    A phase transition within the molten phase of the Abrikosov vortex system without disorder in extreme type-II superconductors is found via large-scale Monte-Carlo simulations. It involves breaking a U(1)-symmetry, and has a zero-field counterpart, unlike vortex lattice melting. Its hallmark is the loss of number-conservation of connected vortex paths threading the entire system {\it in any direction}, driving the vortex line tension to zero. This tension plays the role of a generalized ``stiffness'' of the vortex liquid, and serves as a probe of the loss of order at the transition, where a weak specific heat anomaly is found.Comment: 5 pages, 3 figure

    Critical velocity for superfluid flow across the BEC-BCS crossover

    Full text link
    Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied

    Quantum dynamics in photonic crystals

    Full text link
    Employing a recently developed method that is numerically accurate within a model space simulating the real-time dynamics of few-body systems interacting with macroscopic environmental quantum fields, we analyze the full dynamics of an atomic system coupled to a continuum light-field with a gapped spectral density. This is a situation encountered, for example, in the radiation field in a photonic crystal, whose analysis has been so far been confined to limiting cases due to the lack of suitable numerical techniques. We show that both atomic population and coherence dynamics can drastically deviate from the results predicted when using the rotating wave approximation, particularly in the strong coupling regime. Experimental conditions required to observe these corrections are also discussed.Comment: 5 pages, 2 figures Updated with published versio
    • …
    corecore