5 research outputs found

    Root biomass and production by two cushion plant species of tropical high-elevation peatlands in the andean páramo

    Get PDF
    High-elevation peatlands in the Andes are receiving increasing attention for their biodiversity and their high rates of carbon accumulation. However, the ecology of these peatlands and the environmental factors that control their carbon dynamics remain under-studied. Here we report on the patterns of root biomass productivity and turnover rates for two cushion plant species (Distichia muscoides, Plantago rigida) that commonly dominate high-elevation peatlands (\u3e 4200 m a.s.l.) in the Andean páramo landscape of Northern Ecuador. Root biomass for P. rigida ranged from 680 to 864 g m-2 and was approximately 40 % higher than for D. muscoides (507–620 g m-2). In contrast, root production was almost twice as high for D. muscoides (2000–2800 g m-2 yr-1) than for P. rigida (1030–1080 g m-2 yr-1). These patterns resulted in high root turnover rates, especially for D. muscoides (0.98–1.90 yr-1). Below-ground productivity (as C) at our sites conservatively ranged from 0.55 to 1.5 kg m–2 yr–1, representing approximately 30 % of the estimated total productivity for these species, which only accounts for root production down to 50 cm depth. These high productivity rates are in accordance with the extremely high rates of carbon accumulation that have been reported for high-elevation peatlands of the Andes

    Challenges and opportunities for restoration of high-elevation Andean peatlands in Ecuador

    Get PDF
    Páramo peatlands are a regional reservoir of biodiversity and ecosystem services, accumulating large amounts of carbon and buffering water flows. Despite their importance, they have a long history of use and impacts including drainage for agriculture and grazing, and water withdrawal for human uses. Here we present a preliminary assessment of the conservation status of páramo peatlands in Ecuador and, using a case study, discuss peatland restoration as a tool for mitigation and adaptation to the impacts of current climate change. Through a simple index assessing the cumulative presence of signs of human activities on 163 peatland sites, we found that the level of impact was higher for peatlands located in the Western branch of the cordillera, whereas current human population density, precipitation, and elevation were not significant predictors of the levels of impact. Also, starting in 2017, we implemented a pilot restoration initiative on a 21-ha peatland which had been drained and converted into pasture for at least 150 years. The restoration consisted of two ditch blocking techniques implemented to stop fast-moving water and promote the rewetting of the peatland. During the next 3 years, water table increased from 27 ± 3 cm below the soil surface to 7 ± 1 cm by 2021, while wetland plant communities are colonizing and closing the pools in the blocked ditches. Re-wetting of the peatland has led to an increase in the abundance of native species. This case study suggests that restoration initiatives are an efficient and cost-effective approach to a better management of páramo peatlands, with high potential as a tool for mitigation and adaptation to climate change

    Vegetation structure and aboveground biomass of Páramo peatlands along a high-elevation gradient in the northern Ecuadorian Andes

    Get PDF
    The high-elevation peatlands of the páramos of the northern Andes constitute a diverse environment that harbors large numbers of species and several types of plant communities along altitudinal, latitudinal, and environmental gradients. However, little is known about the structure and functioning of these ecosystems, including peatland vegetation types and their relative contribution to the production and accumulation of peat soils. In this paper we characterized the structure of peatland plant communities of the humid páramos of northern Ecuador by describing the distribution of plant growth-forms and their aboveground biomass patterns. Along an elevation gradient of 640 m we sampled vegetation in 16 peatlands and aboveground biomass in four peatlands. Three distinct peatland vegetation types were identified: High elevation Cushion peatlands, dominated by Plantago rigida and Distichia muscoides, Sedge and rush peatlands dominated by Carex spp. and Juncus spp., and Herbaceous and shrubby peatlands, with a more heterogenous and structurally complex vegetation. In terms of aboveground biomass, we found an 8-fold reduction in the higher peatlands compared to the lower sites, suggesting that the steep elevational gradients characteristic of Andean environments might be crucial in structuring the physiognomy and composition of peatland vegetation, either through its effects on temperature and other environmental factors, or through its effects on the age and development of soils. Additional studies are needed to evaluate the potential effects of temperature, hydrology, micro-topography, geological setting, and land-use, which are likely to influence vegetation patters in these peatlands

    Multidate, multisensor remote sensing reveals high density of carbon‐rich mountain peatlands in the páramo of Ecuador

    No full text
    Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts
    corecore