6 research outputs found

    On the Use of Graphs for Node Connectivity in Wireless Sensor Networks for Hostile Environments

    Full text link
    [EN] Wireless sensor networks (WSNs) have been extensively studied in the literature. However, in hostile environments where node connectivity is severely compromised, the system performance can be greatly affected. In this work, we consider such a hostile environment where sensor nodes cannot directly communicate to some neighboring nodes. Building on this, we propose a distributed data gathering scheme where data packets are stored in different nodes throughout the network instead to considering a single sink node. As such, if nodes are destroyed or damaged, some information can still be retrieved. To evaluate the performance of the system, we consider the properties of different graphs that describe the connections among nodes. It is shown that the degree distribution of the graph has an important impact on the performance of the system. A teletraffic analysis is developed to study the average buffer size and average packet delay. To this end, we propose a reference node approach, which entails an approximation for the mathematical modeling of these networks that effectively simplifies the analysis and approximates the overall performance of the system.The authors wish to thank the Consejo Nacional de Ciencia y Tecnologia (CONACyT), the Comision de Operacion y Fomento de Actividades Academicas, Instituto Politecnico Nacional (COFAA-IPN, project numbers 20196225 and 20196678), and the Estimulos al Desempeno de los Investigadores del Instituto Politecnico Nacional (EDI-IPN) for the support given for this work. The work of V. Pla was supported by Grant PGC2018-094151-B-I00 (MCIU/AEI/FEDER, UE).García-González, E.; Chimal-Eguía, JC.; Rivero-Angeles, ME.; Pla, V. (2019). On the Use of Graphs for Node Connectivity in Wireless Sensor Networks for Hostile Environments. Journal of Sensors. 2019:1-22. https://doi.org/10.1155/2019/7409329S1222019Eren, T. (2017). The effects of random geometric graph structure and clustering on localizability of sensor networks. International Journal of Distributed Sensor Networks, 13(12), 155014771774889. doi:10.1177/1550147717748898Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. SIAM Review, 51(4), 661-703. doi:10.1137/070710111Hakimi, S. L. (1962). On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I. Journal of the Society for Industrial and Applied Mathematics, 10(3), 496-506. doi:10.1137/011003

    A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria

    No full text
    This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT). Using an endoreversible Curzon–Ahlborn (CA) heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law) was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained

    Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats

    No full text
    This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered
    corecore