880 research outputs found

    Plasma Magnetohydrodynamics and Energy Conversion

    Get PDF
    Contains reports on three research projects.National Science Foundation under Grant G-9330U. S. Air Force (Aeronautical Systems Division) under Contract AF33(616)-7624 with the Aeronautical Accessories Laboratory, Wright-Patterson Air Force Base, Ohi

    Eigenlevel statistics of the quantum adiabatic algorithm

    Full text link
    We study the eigenlevel spectrum of quantum adiabatic algorithm for 3-satisfiability problem, focusing on single-solution instances. The properties of the ground state and the associated gap, crucial for determining the running time of the algorithm, are found to be far from the predictions of random matrix theory. The distribution of gaps between the ground and the first excited state shows an abundance of small gaps. Eigenstates from the central part of the spectrum are, on the other hand, well described by random matrix theory.Comment: 8 pages, 10 ps figure

    Quantum Computation with Diatomic Bits in Optical Lattices

    Full text link
    We propose a scheme for scalable and universal quantum computation using diatomic bits with conditional dipole-dipole interaction, trapped within an optical lattice. The qubit states are encoded by the scattering state and the bound heteronuclear molecular state of two ultracold atoms per site. The conditional dipole-dipole interaction appears between neighboring bits when they both occupy the molecular state. The realization of a universal set of quantum logic gates, which is composed of single-bit operations and a two-bit controlled-NOT gate, is presented. The readout method is also discussed.Comment: 5 pages, 1 eps figure, accepted for publication in Phys. Rev.

    Discrete-time quantum walks on one-dimensional lattices

    Full text link
    In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that the coherent dynamics depends on the initial states and coin parameters. For infinite size of lattice, we derive an explicit expression for the return probability, which shows scaling behavior P(0,t)t1P(0,t)\sim t^{-1} and does not depends on the initial states of the walk. In the long-time limit, the probability distribution shows various patterns, depending on the initial states, coin parameters and the lattice size. The average mixing time MϵM_{\epsilon} closes to the limiting probability in linear NN (size of the lattice) for large values of thresholds ϵ\epsilon. Finally, we introduce another kind of quantum walk on infinite or even-numbered size of lattices, and show that the walk is equivalent to the traditional quantum walk with symmetrical initial state and coin parameter.Comment: 17 pages research not

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    Fractional recurrence in discrete-time quantum walk

    Full text link
    Quantum recurrence theorem holds for quantum systems with discrete energy eigenvalues and fails to hold in general for systems with continuous energy. We show that during quantum walk process dominated by interference of amplitude corresponding to different paths fail to satisfy the complete quantum recurrence theorem. Due to the revival of the fractional wave packet, a fractional recurrence characterized using quantum P\'olya number can be seen.Comment: 10 pages, 11 figure : Accepted to appear in Central European Journal of Physic

    Valence bond solid formalism for d-level one-way quantum computation

    Full text link
    The d-level or qudit one-way quantum computer (d1WQC) is described using the valence bond solid formalism and the generalised Pauli group. This formalism provides a transparent means of deriving measurement patterns for the implementation of quantum gates in the computational model. We introduce a new universal set of qudit gates and use it to give a constructive proof of the universality of d1WQC. We characterise the set of gates that can be performed in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical and Genera

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Quantum Reading Capacity

    Get PDF
    The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory [S. Pirandola, Phys. Rev. Lett. 106, 090504 (2011)]. In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts by extending the model of memory from single-cell to multi-cell encoding. In general, information is stored in a block of cells by using a channel-codeword, i.e., a sequence of channels chosen according to a classical code. Correspondingly, the readout of data is realized by a process of "parallel" channel discrimination, where the entire block of cells is probed simultaneously and decoded via an optimal collective measurement. In the limit of an infinite block we define the quantum reading capacity of the memory, quantifying the maximum number of readable bits per cell. This notion of capacity is nontrivial when we suitably constrain the physical resources of the decoder. For optical memories (encoding bosonic channels), such a constraint is energetic and corresponds to fixing the mean total number of photons per cell. In this case, we are able to prove a separation between the quantum reading capacity and the maximum information rate achievable by classical transmitters, i.e., arbitrary classical mixtures of coherent states. In fact, we can easily construct nonclassical transmitters that are able to outperform any classical transmitter, thus showing that the advantages of quantum reading persist in the optimal multi-cell scenario.Comment: REVTeX. 16 pages. 11 figure
    corecore