106 research outputs found

    Thermodynamics of O(N) sigma models: 1/N corrections

    Full text link
    The thermodynamics of the O(N) linear and nonlinear sigma models in 3+1 dimensions is studied. We calculate the pressure to next-to-leading order in the 1/N expansion and show that at this order, temperature-independent renormalization is only possible at the minimum of the effective potential. The 1/N expansion is found to be a good expansion for N as low as 4, which is the case relevant for low-energy QCD phenomenology. We consider the cases with and without explicit symmetry breaking. We show that previous next-to-leading order calculations of the pressure are either breaking down in the temperatures of interest, or based on unjustifiable high-energy approximations.Comment: 11 pages, 5 figures, revte

    On the thermal sunset diagram for scalar field theories

    Full text link
    We study the so-called `` sunset diagram'', which is one of two-loop self-energy diagrams, for scalar field theories at finite temperature. For this purpose, we first find the complete expression of the bubble diagram, the one-loop subdiagram of the sunset diagram, for arbitrary momentum. We calculate the temperature independent part and dependent part of the sunset diagram separately. For the former, we obtain the discontinuous part first and the finite continuous part next using a twice-subtracted dispersion relation. For the latter, we express it as a one-dimensional integral in terms of the bubble diagram. We also study the structure of the discontinuous part of the sunset diagram. Physical processes, which are responsible for it, are identified. Processes due to the scattering with particles in the heat bath exist only at finite temperature and generate discontinuity for arbitrary momentum, which is a remarkable feature of the two-loop diagrams at finite temperature. As an application of our result, we study the effect of the diagram on the spectral function of the sigma meson at finite temperature in the linear sigma model, which was obtained at one-loop order previously. At high temperature where the decay σππ\sigma\to\pi\pi is forbidden, sigma acquires a finite width of the order of 10MeV10 {\rm MeV} while within the one-loop calculation its width vanishes. At low temperature, the spectrum does not deviate much from that at one-loop order. Possible consequences with including other two-loop diagrams are discussed.Comment: 30 page

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    In-medium pi-pi Correlation Induced by Partial Restoration of Chiral Symmetry

    Get PDF
    We show that both the linear and the non-linear chiral models give an enhancement of the pi-pi cross section near the 2pi threshold in the scalar-iso-scalar (I=J=0) channel in nuclear matter. The reduction of the chiral condensate, i.e., the partial chiral restoration in nuclear matter, is responsible for the enhancement in both cases. We extract an effective 4pi-nucleon vertex which is responsible for the enhancement but has not been considered in the non-liear models for in-medium pi-pi interaction. Relation of this vertex and a next-to-leading order terms in the heavy-baryon chiral lagrangian, L_piN^(2), is also discussed.Comment: 5 pages, 5 eps figure, REVTe

    The Fokker-Planck equation for bistable potential in the optimized expansion

    Full text link
    The optimized expansion is used to formulate a systematic approximation scheme to the probability distribution of a stochastic system. The first order approximation for the one-dimensional system driven by noise in an anharmonic potential is shown to agree well with the exact solution of the Fokker-Planck equation. Even for a bistable system the whole period of evolution to equilibrium is correctly described at various noise intensities.Comment: 12 pages, LATEX, 3 Postscript figures compressed an

    A Precursor of Chiral Symmetry Restoration in the Nuclear Medium

    Full text link
    Spectral enhancement near the 2m_{\pi} threshold in the I=J=0 channel in nuclei is shown to be a distinct signal of the partial restoration of chiral symmetry. The relevance of this phenomenon with the possible detection of 2\pi^{0} and 2\gamma in hadron-nucleus and photo-nucleus reactions is discussed.Comment: Revtex, 4 pages, 3 eps figures, title and introduction changed, to appear in Phys. Rev. Let

    Spectral functions in the sigma-channel near the critical end point

    Get PDF
    Spectral functions in the σ\sigma-channel are investigated near the chiral critical end point (CEP), that is, the point where the chiral phase transition ceases to be first-ordered in the (μ,T)(\mu,T)-plane of the QCD phase diagram. At that point the σ\sigma meson becomes massless in spite of explicit breaking of the chiral symmetry. It is expected that experimental signatures peculiar to CEP can be observed through spectral changes in the presence of abnormally light σ\sigma mesons. As a candidate, the invariant-mass spectrum for diphoton emission is estimated with the chiral quark model incorporated. The results show the characteristic shape with a peak in the low energy region, which may serve as a signal for CEP. However, we find that the diphoton multiplicity is highly suppressed by infrared behaviors of the σ\sigma meson. Experimentally, in such a low energy region below the threshold of two pions, photons from π02γ\pi^0\to2\gamma are major sources of the background for the signal.Comment: 12 pages, 8 figures, 1 figure replaced, minor modification

    Investigation into O(N) Invariant Scalar Model Using Auxiliary-Mass Method at Finite Temperature

    Get PDF
    Using auxiliary-mass method, O(N) invariant scalar model is investigated at finite temperature. This mass and an evolution equation allow us to calculate an effective potential without an infrared divergence. Second order phase transition is indicated by the effective potential. The critical exponents are determined numerically.Comment: LaTex 8 pages with 3 eps figure
    corecore