54 research outputs found

    Gene Expression Rhythms in the Mussel Mytilus galloprovincialis (Lam.) across an Annual Cycle

    Get PDF
    Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends – in terms of relative mRNA abundance- we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion showed higher mRNA levels during summer. Moreover, we found different gene transcriptomic patterns in the digestive glands of males when compared to females, during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases respect to the resting period (stage I) with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. These data showed a clear temporal pattern in transcriptomic profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in relative mRNA abundance

    Challenges of continuum robots in clinical context: a review

    Get PDF
    With the maturity of surgical robotic systems based on traditional rigid-link principles, the rate of progress slowed as limits of size and controllable degrees of freedom were reached. Continuum robots came with the potential to deliver a step change in the next generation of medical devices, by providing better access, safer interactions and making new procedures possible. Over the last few years, several continuum robotic systems have been launched commercially and have been increasingly adopted in hospitals. Despite the clear progress achieved, continuum robots still suffer from design complexity hindering their dexterity and scalability. Recent advances in actuation methods have looked to address this issue, offering alternatives to commonly employed approaches. Additionally, continuum structures introduce significant complexity in modelling, sensing, control and fabrication; topics which are of particular focus in the robotics community. It is, therefore, the aim of the presented work to highlight the pertinent areas of active research and to discuss the challenges to be addressed before the potential of continuum robots as medical devices may be fully realised

    Étude de la dégradation des sols en milieu semi-aride à l'aide de l'approche neuronale et de données multisources

    No full text
    International audienc

    An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots

    No full text
    International audienceIn this paper, we provide an analytical formulation for the geometrico-static problem of continuum planar parallel robots. This formulation provides to an analytical computation of a set of equations governing the equilibrium configurations. We also introduce a stability criterion of the computed configurations. This formulation is based on the use of Kirchhoff's rod deformation theory and finite-difference approximations. Their combination leads to a quadratic expression of the rod's deformation energy. Equilibrium configurations of a planar parallel robot composed of two hinged flexible rods are computed according to this new formulation and compared with the ones obtained with state-of-the-art approaches. By assessing equilibrium stability with the proposed technique, new unstable configurations are determined

    Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern Morocco [+ Corrigendum 2021, 9, 166]

    No full text
    The objective of this study was to examine the impacts of climate and land use changes on water availability and sediment loads for a water supply reservoir in northern Morocco using data-intensive simulation models in a data-scarce region. Impacts were assessed by comparing the simulated water and sediment entering the reservoir between the future period 2031-2050 and the 1983-2010 reference period. Three scenarios of land use change and two scenarios of climate change were developed in the Tleta watershed. Simulations under current and future conditions were performed using the Soil and Water Assessment Tool (SWAT) model. The simulations showed that climate change will lead to a significant decrease in the annual water supply to the reservoir (-16.9% and -27.5%) and in the annual volume of sediment entering the reservoir (-7.4% and -12.6%), depending on the climate change scenarios tested. The three scenarios of land use change will lead to a moderate change in annual water inflow into the reservoir (between -6.7% and -6.2%), while causing a significant decrease in sediment entering the reservoir (-37% to -24%). The combined impacts of climate and land use changes will cause a reduction in annual water availability (-9.9% to -33.3%) and sediment supplies (-28.7% to -45.8%). As a result, the lifetime of the reservoir will be extended, but at the same time, the risk of water shortages will increase, especially from July to March. Therefore, alternative water resources must be considered
    • …
    corecore