3 research outputs found

    Isotope-production cross sections of residual nuclei in proton- and deuteron-induced reactions on

    No full text
    The isotope-production cross sections in p- and d-induced reactions on 93Zr at approximately 50 MeV/nucleon were measured by using the inverse-kinematics method at RIKEN RI Beam Factory. The measured data were compared with the previous experimental 93Zr + p, d at 105 and 209 MeV/nucleon data. This comparison represents that the isotopic distribution of production cross sections at 51 MeV p-induced reaction is appreciably different from those at 105 and 209 MeV. On the other hand, these three data sets show that the shape of isotopic distribution is similar in the case of the d-induced reaction. Also, the measured production cross sections were compared with the theoretical model calculations with Particle and Heavy Ion Transport code System (PHITS) version 3.10 in order to investigate the reproducibility of the models implemented in PHITS. The calculations well reproduced the experimental data even in such low incident energy, while several discrepancies were still seen as in the p- and d-induced reactions at 105 and 209 MeV/nucleon

    Isotope-production cross sections of residual nuclei in proton- and deuteron-induced reactions on 93Zr at 50 MeV/u

    Get PDF
    The isotope-production cross sections in p- and d-induced reactions on 93Zr at approximately 50 MeV/nucleon were measured by using the inverse-kinematics method at RIKEN RI Beam Factory. The measured data were compared with the previous experimental 93Zr + p, d at 105 and 209 MeV/nucleon data. This comparison represents that the isotopic distribution of production cross sections at 51 MeV p-induced reaction is appreciably different from those at 105 and 209 MeV. On the other hand, these three data sets show that the shape of isotopic distribution is similar in the case of the d-induced reaction. Also, the measured production cross sections were compared with the theoretical model calculations with Particle and Heavy Ion Transport code System (PHITS) version 3.10 in order to investigate the reproducibility of the models implemented in PHITS. The calculations well reproduced the experimental data even in such low incident energy, while several discrepancies were still seen as in the p- and d-induced reactions at 105 and 209 MeV/nucleon
    corecore