18 research outputs found

    Interaction of marijuana and alcohol on fatal motor vehicle crash risk: a case–control study

    Get PDF
    Background: Concurrent use of marijuana and alcohol in drivers is of increasing concern but its role in crash causation has not been well understood. Methods: Using a case–control design, we assessed the individual and joint effects of marijuana and alcohol use on fatal crash risk. Cases (n = 1944) were drivers fatally injured in motor vehicle crashes in the United States at specific times in 2006, 2007 and 2008. Controls (n = 7719) were drivers who participated in the 2007 National Roadside Survey of Alcohol and Drug Use by Drivers. Results: Overall, cases were significantly more likely than controls to test positive for marijuana (12.2% vs. 5.9%, p < 0.0001), alcohol (57.8% vs. 7.7%, p < 0.0001) and both marijuana and alcohol (8.9% vs. 0.8%, p < 0.0001). Compared to drivers testing negative for alcohol and marijuana, the adjusted odds ratios of fatal crash involvement were 16.33 [95% confidence interval (CI): 14.23, 18.75] for those testing positive for alcohol and negative for marijuana, 1.54 (95% CI: 1.16, 2.03) for those testing positive for marijuana and negative for alcohol, and 25.09 (95% CI: 17.97, 35.03) for those testing positive for both alcohol and marijuana. Conclusions: Alcohol use and marijuana use are each associated with significantly increased risks of fatal crash involvement. When alcohol and marijuana are used together, there exists a positive synergistic effect on fatal crash risk on the additive scale

    Depression, antidepressants and driving safety.

    Get PDF
    BackgroundThe purpose of this study was to review to review the reported associations of depression and antidepressants with motor vehicle crashes.PurposeA literature search for material published in the English language between January, 1995, and October, 2015, in bibliographic databases was combined with a search for other relevant material referenced in the retrieved articles.MethodsRetrieved articles were systematically reviewed for inclusion criteria: 19 epidemiological studies (17 case-control and 2 cohort studies) fulfilled the inclusion criteria by estimating the crash risk associated with depression and/or psychotropic medications in naturalistic settings.ResultsThe estimates of the odds ratio (OR) of crash involvement associated with depression ranged from 1.78 to 3.99. All classes of antidepressants were reported to have side effects with the potential to affect driving safety. The majority of studies of antidepressant effects on driving reported an elevated crash risk, and ORs ranged from 1.19 to 2.03 for all crashes, and 3.19 for fatal crashes. In meta-analysis, depression was associated with approximately 2-fold increased crash risk (summary OR = 1.90; 95% CI, 1.06 to 3.39), and antidepressants were associated with approximately 40% increased crash risk (summary OR = 1.40; 95%CI, 1.18 to 1.66).ConclusionBased on the findings of the studies reviewed, depression, antidepressants or the combination of depression and antidepressants may pose a potential hazard to driving safety. More research is needed to understand the individual contributions of depression and the medications used to treat depression

    Validity of oral fluid test for Delta-9-tetrahydrocannabinol in drivers using the 2013 National Roadside Survey Data

    Get PDF
    Background Driving under the influence of marijuana is a serious traffic safety concern in the United States. Delta 9-tetrahydrocannabinol (THC) is the main active compound in marijuana. Although blood THC testing is a more accurate measure of THC-induced impairment, measuring THC in oral fluid is a less intrusive and less costly method of testing. Methods We examined whether the oral fluid THC test can be used as a valid alternative to the blood THC test using a sensitivity and specificity analysis and a logistic regression, and estimate the quantitative relationship between oral fluid THC concentration and blood THC concentration using a correlation analysis and a linear regression on the log-transformed THC concentrations. We used data from 4596 drivers who participated in the 2013 National Roadside Survey of Alcohol and Drug Use by Drivers and for whom THC testing results from both oral fluid and whole blood samples were available. Results Overall, 8.9% and 9.4% of the participants tested positive for THC in oral fluid and whole blood samples, respectively. Using blood test as the reference criterion, oral fluid test for THC positivity showed a sensitivity of 79.4% (95% CI: 75.2%, 83.1%) and a specificity of 98.3% (95% CI: 97.9%, 98.7%). The log-transformed oral fluid THC concentration accounted for about 29% of the variation in the log-transformed blood THC concentration. That is, there is still 71% of the variation in the log-transformed blood THC concentration unexplained by the log-transformed oral fluid THC concentration. Back-transforming to the original scale, we estimated that each 10% increase in the oral fluid THC concentration was associated with a 2.4% (95% CI: 2.1%, 2.8%) increase in the blood THC concentration. Conclusions The oral fluid test is a highly valid method for detecting the presence of THC in the blood but cannot be used to accurately measure the blood THC concentration
    corecore