110 research outputs found

    How Do Scale Insects Settle into the Nests of Plant-Ants on Macaranga Myrmecophytes? Dispersal by Wind and Selection by Plant-Ants

    Get PDF
    This report elucidates the process of settlement by Coccus scale insects into Crematogaster plant-ant nests formed inside the hollow stems of a myrmecophytic species, Macaranga bancana, in a tropical rain forest. We collected wafting scale insect nymphs from the canopy using sticky traps and characterized the DNA sequence of the trapped nymphs. In addition, we experimentally introduced first-instar nymphs of both symbiotic and nonsymbiotic scale insects to M. bancana seedlings with newly formed plant-ant colonies. Nymphs of symbiotic species were generally carried by ants into their nests within a few minutes of introduction. Most nymphs of nonsymbiotic species were thrown to the ground by ants. Our results suggest that in Crematogaster-Macaranga myrmecophytism, symbiotic coccids disperse by wind onto host plant seedlings at the nymphal stage, and plant-ants actively carry the nymphs landing on seedlings into their nests in discrimination from nonsymbiotic scale insects.ArticleSOCIOBIOLOGY. 59(2):435-446 (2012)journal articl

    External and internal focus of attention differentially modulate corticospinal excitability in anticipatory postural adjustments

    Get PDF
    Whether attentional focus modulates the corticospinal excitability of the lower limb muscles in anticipatory postural adjustments (APAs) when performing a ballistic movement of the upper limb remains unclear. The present study used transcranial magnetic stimulation (TMS) to examine the corticospinal excitability of the lower limb muscles along with the kinematic profiles during dart throwing with different attentional foci, external focus (EF) and internal focus (IF). In 13 healthy participants, TMS was applied immediately before electromyographic onset of the tibialis anterior (TA) muscle, and the motor evoked potential (MEP) was recorded in the TA and soleus (SOL) muscles. The performance accuracy was significantly higher in the EF condition than in the IF condition. In both EF and IF conditions, MEP amplitude in the TA muscle, but not the SOL muscle, was significantly higher immediately before TA muscle onset (− 100, − 50, and 0 ms) compared to the control. In particular, the MEP increment in the TA muscle before TA muscle onset (− 50 and 0 ms) was significantly larger in the EF condition than in the IF condition. Our findings provide the first evidence for the modulation of corticospinal excitability in APA by changing attentional focus

    A three-component monooxygenase from Rhodococcus wratislaviensis may expand industrial applications of bacterial enzymes

    Get PDF
    地球外有機化合物に対する微生物代謝の解明から全く新規な酵素系を発見 --生命分子進化の理解や産業応用に期待--. 京都大学プレスリリース. 2021-01-20.The high-valent iron-oxo species formed in the non-heme diiron enzymes have high oxidative reactivity and catalyze difficult chemical reactions. Although the hydroxylation of inert methyl groups is an industrially promising reaction, utilizing non-heme diiron enzymes as such a biocatalyst has been difficult. Here we show a three-component monooxygenase system for the selective terminal hydroxylation of α-aminoisobutyric acid (Aib) into α-methyl-D-serine. It consists of the hydroxylase component, AibH1H2, and the electron transfer component. Aib hydroxylation is the initial step of Aib catabolism in Rhodococcus wratislaviensis C31-06, which has been fully elucidated through a proteome analysis. The crystal structure analysis revealed that AibH1H2 forms a heterotetramer of two amidohydrolase superfamily proteins, of which AibHm2 is a non-heme diiron protein and functions as a catalytic subunit. The Aib monooxygenase was demonstrated to be a promising biocatalyst that is suitable for bioprocesses in which the inert C–H bond in methyl groups need to be activated

    Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues

    Get PDF
    Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems
    corecore