4,246 research outputs found

    Titanium Dioxide Nanoparticle Humidity Microsensors Integrated with Circuitry on-a-Chip

    Get PDF
    A humidity microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process was presented. The integrated sensor chip consists of a humidity sensor and a readout circuit. The humidity sensor is composed of a sensitive film and interdigitated electrodes. The sensitive film is titanium dioxide prepared by the sol-gel method. The titanium dioxide is coated on the interdigitated electrodes. The humidity sensor requires a post-process to remove the sacrificial layer and to coat the titanium dioxide. The resistance of the sensor changes as the sensitive film absorbs or desorbs vapor. The readout circuit is employed to convert the resistance variation of the sensor into the output voltage. The experimental results show that the integrated humidity sensor has a sensitivity of 4.5 mV/RH% (relative humidity) at room temperature

    Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    Get PDF
    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment

    COMPARISON OF PLAYER’S CENTER OF MASS MOVEMENT BETWEEN HIGH AND LOW IMPACT POSITIONS IN TENNIS FOREHAND STROKE

    Get PDF
    During the tennis forehand stroke, the displacement of body center of mass (COM) changes with the body movement. The COM movement influences the recovery from one stroke to the next. Therefore, the purpose of this study is to investigate the differences of COM movement and joint kinematics between high and low-impact positions on different skilled players. This study adopted a 3-D motion analysis system for recording and tracing the advanced (n = 5; level 3-4) and intermediate (n = 7; level 5-6) athletes’ motion of whole body during high and low-impact positions in tennis forehand stroke. The results showed that significant difference was not found between both impact positions and level groups in ball velocity. Advanced group showed greater anterior/posterior displacement than the intermediate group in low-impact position that increased the kinetic energy

    An interactively recurrent functional neural fuzzy network with fuzzy differential evolution and its applications

    Get PDF
    In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE) learning method was proposed for solving the control and the prediction problems. The traditional differential evolution (DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer, the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness of the proposed method

    Associations of parental bonding and adolescent internet addiction symptoms with depression and anxiety in parents of adolescents with attention deficit/hyperactivity disorder

    Get PDF
    Objectives: The aim of the present study was to evaluate the associations of parental bonding and adolescents’ Internet addiction symptoms with depression and anxiety in parents of adolescents with attention deficit/hyperactivity disorder (ADHD). Methods: Parental depression and anxiety symptoms, parental bonding, and adolescents’ Internet addiction symptoms were assessed in 46 parent-child dyads using the Center for Epidemiological Studies Depression Scale, State-Trait Anxiety Inventory, Parental Bonding Instrument (PBI), and Chen Internet Addiction Scale, respectively. Forward stepwise multiple regression analysis was used to examine the associations of parental bonding and adolescents’ Internet addiction symptoms with parental depression and anxiety. Results: Low care/affection on the PBI was significantly associated with parental depression, and overprotection on the PBI and adolescents’ Internet addiction were significantly associated with parental anxiety. Discussion: Parental bonding and adolescents’ Internet addiction are related to depression and anxiety in parents of adolescents with ADHD

    Plasmonic Circular Nanostructure for Enhanced Light Absorption in Organic Solar Cells

    Get PDF
    This study attempts to enhance broadband absorption in advanced plasmonic circular nanostructures (PCN). Experimental results indicate that the concentric circular metallic gratings can enhance broadband optical absorption, due to the structure geometry and the excitation of surface plasmon mode. The interaction between plasmonic enhancement and the absorption characteristics of the organic materials (P3HT:PCBM and PEDOT:PSS) are also examined. According to those results, the organic material's overall optical absorption can be significantly enhanced by up to ~51% over that of a planar device. Additionally, organic materials are enhanced to a maximum of 65% for PCN grating pitch = 800 nm. As a result of the PCN's enhancement in optical absorption, incorporation of the PCN into P3HT:PCBM-based organic solar cells (OSCs) significantly improved the performance of the solar cells: short-circuit current increased from 10.125 to 12.249 and power conversion efficiency from 3.2% to 4.99%. Furthermore, optimizing the OSCs architectures further improves the performance of the absorption and PCE enhancement

    Developing Mobile- and BIM-Based Integrated Visual Facility Maintenance Management System

    Get PDF
    Facility maintenance management (FMM) has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM) uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM) system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool

    Improving Antigenicity of the Recombinant Hepatitis C Virus Core Protein via Random Mutagenesis

    Get PDF
    In order to enhance the sensitivity of diagnosis, a recombinant clone containing domain I of HCV core (amino acid residues 1 to 123) was subjected to random mutagenesis. Five mutants with higher sensitivity were obtained by colony screening of 616 mutants using reverse ELISA. Sequence analysis of these mutants revealed alterations focusing on W84, P95, P110, or V129. The inclusion bodies of these recombinant proteins overexpressed in E. coli BL21(DE3) were subsequently dissolved using 6 M urea and then refolded by stepwise dialysis. Compared to the unfolded wild-type antigen, the refolded M3b antigen (W84S, P110S and V129L) exhibited an increase of 66% antigenicity with binding capacity of 0.96 and affinity of 113 μM−1. Moreover, the 33% decrease of the production demand suggests that M3b is a potential substitute for anti-HCV antibody detection
    corecore