4,881 research outputs found

    Modular Properties of 3D Higher Spin Theory

    Full text link
    In the three-dimensional sl(N) Chern-Simons higher-spin theory, we prove that the conical surplus and the black hole solution are related by the S-transformation of the modulus of the boundary torus. Then applying the modular group on a given conical surplus solution, we generate a 'SL(2,Z)' family of smooth constant solutions. We then show how these solutions are mapped into one another by coordinate transformations that act non-trivially on the homology of the boundary torus. After deriving a thermodynamics that applies to all the solutions in the 'SL(2,Z)' family, we compute their entropies and free energies, and determine how the latter transform under the modular transformations. Summing over all the modular images of the conical surplus, we write down a (tree-level) modular invariant partition function.Comment: 51 pages; v2: minor corrections and additions; v3: final version, to appear in JHE

    Local Patterns for Face Recognition

    Get PDF
    The main objective of the local pattern is to describe the image with high discriminative features so that the local pattern descriptors are more suitable for face recognition. The word “local” represents the measured image with the subregion and is the key in this chapter. Regardless of the techniques proposed, the local pattern is one of the most interesting areas in face recognition. The local facial descriptor is a local pattern that generates the descriptor by considering the subregion of an image. Techniques based on various combination methods from the local facial descriptors are not unusual. This chapter is concerned primarily to help the reader to develop a basic understanding of the local pattern descriptors and how they apply to face recognition. We begin to describe the outline of the local pattern in face recognition and its relative facial descriptors. Next, we give an introduction to the popular local patterns and establish examples to demonstrate the process of each method. To the end of this chapter, we conclude those methods with a discussion of issues related to the properties of the local patterns

    The patterning of glutaraldehyde-crosslinked gelatin

    Get PDF
    [[abstract]]This paper proposes a novel technique for fabricating micro patterns of glutaraldehyde(GA)-crosslinked gelatin. It provides another means to crosslink gelatin other than using the photo-sensitizing agents, and the micro patterns of GA-crosslinked gelatin can still be made successfully by accessing the conventional photolithography. The much less toxic and more biocompatible approaches of strengthening the gelatin microstructures can be developed according to the idea herein. The over-crosslinking or the edge-diffusion phenomena, and the correlated processing issues are also depicted in this paper.[[conferencetype]]國際[[conferencedate]]20040125~20040129[[conferencelocation]]Maastricht, Netherland

    A liquid-based gravity-driven etching-stop technique and its application to wafer level cantilever thickness control of AFM probes

    Get PDF
    [[abstract]]This paper mainly describes a liquid based gravity driven etching stop technique used for cantilever thickness control of atomic force microscope (AFM) probes on the wafer level. The technique makes use of the method of opposite etching trenches or the depth rulers. A pair of opposite trenches surrounds several AFM probes on both sides of the wafer to form probe chips. The trench depth on the cantilever front side is equal to the designed thickness of cantilevers. In the final step of the fabrication process for AFM probes, the wafer is etched by the KOH etchant to form the probe handles. The probe chips will be separated from the wafer simultaneously with the penetration of wafers at the trenches. The separated probes fall into the diiodomethane (CH2I2) solution beneath the KOH etchant and the wet etching stops automatically. The cantilever thickness of the AFM probes can then be wafer level controlled by the proposed etching stop technique.[[conferencetype]]國際[[conferencedate]]20050130~20050203[[conferencelocation]]Miami Beach, FL, US

    Signals of New Gauge Bosons in Gauged Two Higgs Doublet Model

    Get PDF
    Recently a gauged two Higgs doublet model, in which the two Higgs doublets are embedded into the fundamental representation of an extra local SU(2)HSU(2)_H group, is constructed. Both the new gauge bosons ZZ^\prime and W(p,m)W^{\prime (p,m)} are electrically neutral. While ZZ^\prime can be singly produced at colliders, W(p,m)W^{\prime (p,m)}, which is heavier, must be pair produced. We explore the constraints of ZZ^\prime using the current Drell-Yan type data from the Large Hadron Collider. Anticipating optimistically that ZZ^\prime can be discovered via the clean Drell-Yan type signals at high luminosity upgrade of the collider, we explore the detectability of extra heavy fermions in the model via the two leptons/jets plus missing transverse energy signals from the exotic decay modes of ZZ^\prime. For the W(p,m)W^{\prime (p,m)} pair production in a future 100 TeV proton-proton collider, we demonstrate certain kinematical distributions for the two/four leptons plus missing energy signals have distinguishable features from the Standard Model background. In addition, comparisons of these kinematical distributions between the gauged two Higgs doublet model and the littlest Higgs model with T-parity, the latter of which can give rise to the same signals with competitive if not larger cross sections, are also presented.Comment: 39 pages, 23 figures, 7 tables and two new appendixes, to appear in EPJ
    corecore