1,596 research outputs found

    Can Social Exchange Theory Explain Individual Knowledge-Sharing Behavior? A Meta-Analysis

    Get PDF
    Motivating people to contribute knowledge has become an important research topic and a major challenge for organizations. In order to promote knowledge-sharing, managers need to understand the mechanism that drives individuals to contribute their valuable knowledge. Several theories have been applied to study knowledge-sharing behavior. However, the research settings and findings are often inconsistent. In this study, we use the social exchange theory as our base to develop an extended model that includes IT support and organizational type as moderators. A meta-analysis on 29 reported studies was conducted to examine how different factors in the social exchange theory affect knowledge-sharing behavior. The findings confirm that the social exchange theory plays an important role underlying individuals’ knowledge-sharing behavior. The results also demonstrate that social interaction and trust derived from the social exchange theory and moderated by IT contextual factors can predict individual’s knowledge-sharing behavior

    From Smoking to Cancers: Novel Targets to Neuronal Nicotinic Acetylcholine Receptors

    Get PDF
    Cigarette smoking bears a strong etiological association with many neovascularization-related diseases, including cancer, cardiovascular disease, and age-related macular degeneration. Cigarette smoke is a complex mixture of many compounds, including nicotine, which is the major active and addictive component of tobacco. Nicotine and its specific metabolized carcinogens directly bind to nicotinic acetylcholine receptors (nAChRs) on cell membranes and trigger the nAChR signal cascade. The nAChRs were originally thought to be ligand-gated ion channels that modulate physiological processes ranging from neurotransmission to cancer signaling. For several decades, the nAChRs served as a prototypic molecule for neurotransmitter receptors; however, they are now important therapeutic targets for various diseases, including Alzheimer's and Parkinson's diseases, schizophrenia, and even cancer. This paper describes recent advances in our understanding of the assembly, activity, and biological functions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands

    The Impact of Peak Hydrogeneration for Reserving Environmental Flow in Dachia River, Taiwan

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

    Get PDF
    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation

    Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked to fluctuations in expectation, attention, arousal, and task strategy. Therefore, a method that permits the extraction of the oscillatory signal on a single-trial basis is important for the study of subtle brain dynamics, which can be used as probes to study neurophysiology in normal brain and pathophysiology in the diseased.</p> <p>Methods</p> <p>This paper presents an empirical mode decomposition (EMD)-based spatiotemporal approach to extract neural oscillatory activities from multi-channel electroencephalograph (EEG) data. The efficacy of this approach manifests in extracting single-trial post-movement beta activities when performing a right index-finger lifting task. In each single trial, an EEG epoch recorded at the channel of interest (CI) was first separated into a number of intrinsic mode functions (IMFs). Sensorimotor-related oscillatory activities were reconstructed from sensorimotor-related IMFs chosen by a spatial map matching process. Post-movement beta activities were acquired by band-pass filtering the sensorimotor-related oscillatory activities within a trial-specific beta band. Signal envelopes of post-movement beta activities were detected using amplitude modulation (AM) method to obtain post-movement beta event-related synchronization (PM-bERS). The maximum amplitude in the PM-bERS within the post-movement period was subtracted by the mean amplitude of the reference period to find the single-trial beta rebound (BR).</p> <p>Results</p> <p>The results showed single-trial BRs computed by the current method were significantly higher than those obtained from conventional average method (<it>P </it>< 0.01; matched-pair Wilcoxon test). The proposed method provides high signal-to-noise ratio (SNR) through an EMD-based decomposition and reconstruction process, which enables event-related oscillatory activities to be examined on a single-trial basis.</p> <p>Conclusions</p> <p>The EMD-based method is effective for artefact removal and extracting reliable neural features of non-phase-locked oscillatory activities in multi-channel EEG data. The high extraction rate of the proposed method enables the trial-by-trial variability of oscillatory activities can be examined, which provide a possibility for future profound study of subtle brain dynamics.</p

    Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2-xFe4+ySe5)

    Full text link
    The parent compound of an unconventional superconductor must contain unusual correlated electronic and magnetic properties of its own. In the high-Tc potassium intercalated FeSe, there has been significant debate regarding what the exact parent compound is. Our studies unambiguously show that the Fe-vacancy ordered K2Fe4Se5 is the magnetic, Mott insulating parent compound of the superconducting state. Non-superconducting K2Fe4Se5 becomes a superconductor after high temperature annealing, and the overall picture indicates that superconductivity in K2-xFe4+ySe5 originates from the Fe-vacancy order to disorder transition. Thus, the long pending question whether magnetic and superconducting state are competing or cooperating for cuprate superconductors may also apply to the Fe-chalcogenide superconductors. It is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly to the superconducting cuprates

    Recycling Nonmagnetic Material from De-sulferization Slag as Coarse Aggregate through Cold-Pressing Technique

    Get PDF
    Every year there was approximately 500,000 tons of de-sulferization slag generated in Taiwan, but the recycling amount was very slightly. A new approach, the cold-pressing technique that incorporates the principles of the cement chemistry and composite material was developed to recycle innocuous resources (e.g. construction residual soil, granite and lime sludge, and sediment, etc.) as recycling coarse aggregate. Even this technique also has successfully been applied to recycle stainless steel reductive slag with low volume stability. This paper aims to show that using cold-pressing technique can recycle nonmagnetic material from de-sulferization slag as coarse aggregate. Herein the cement-based composite is regarded as concrete. Particularly, the mixture proportions with a low cement amount of 100 kg/m3 and more than 70% (by weight) of nonmagnetic material from de-sulferization were designed. The test results show that the specific gravity of recycling coarse aggregate is about 1.67 in the OD state; the absorption capacity is 27.65%; the dry loose density (i.e. unit weight) is about 1,106 kg/m3; and other characteristics conform to ASTM C33. Therefore the cold-pressing technique is a new and practicable approach to recycle nonmagnetic material from de-sulferization slag in future

    Pituitary macroadenoma co-existent with supraclinoid internal carotid artery cerebral aneurysm: a case report and review of the literature

    Get PDF
    With improved angiographic techniques and magnetic resonance angiography available today, an increasing number of incidental aneurysms are being detected. Occurrence of an intracranial aneurysm together with a pituitary adenoma presents tremendous risk to the patient, particularly when the aneurysm lies near the operative field
    corecore