5,695 research outputs found

    Gravitational radiations of generic isolated horizons and non-rotating dynamical horizons from asymptotic expansions

    Full text link
    Instead of using a three dimensional analysis on quasi-local horizons, we adopt a four dimensional asymptotic expansion analysis to study the next order contributions from the nonlinearity of general relativity. From the similarity between null infinity and horizons, the proper reference frames are chosen from the compatible constant spinors for an observer to measure the energy-momentum and flux near quasi-local horizons. In particular, we focus on the similarity of Bondi-Sachs gravitational radiation for the quasi-local horizons and compare our results to Ashtekar-Kirshnan flux formular. The quasi-local energy momentum and flux of generic isolated horizons and non-rotating dynamical horizons are discussed in this paper.Comment: PRD, 15 page

    Ultrabright Backward-wave Biphoton Source

    Full text link
    We calculate the properties of a biphoton source based on resonant backward-wave spontaneous parametric down-conversion. We show that the biphotons are generated in a single longitudinal mode having a subnatural linewidth and a Glauber correlation time exceeding 65 ns.Comment: 4 pages, 3 figure

    Controlling plant architecture by manipulation of gibberellic acid signalling in petunia.

    Get PDF
    Since stem elongation is a gibberellic acid (GA) response, GA inhibitors are commonly used to control plant height in the production of potted ornamentals and bedding plants. In this study, we investigated interfering with GA signaling by using molecular techniques as an alternative approach. We isolated three putative GID1 genes (PhGID1A, PhGID1B and PhGID1C) encoding GA receptors from petunia. Virus-induced gene silencing (VIGS) of these genes results in stunted growth, dark-green leaves and late-flowering. We also isolated the gai mutant gene (gai-1) from Arabidopsis. We have generated transgenic petunia plants in which the gai mutant protein is over-expressed under the control of a dexamethasone-inducible promoter. This system permits induction of the dominant Arabidopsis gai mutant gene at a desired stage of plant development in petunia plants by the application of dexamethasone (Dex). The induction of gai in Dex-treated T1 petunia seedlings caused dramatic growth retardation with short internodes

    Completing incomplete cohort fertility schedules

    Get PDF
    This paper develops a simple age-period-cohort framework in completing incomplete cohort fertility schedules, and makes full use of 1917--2005 U.S. data to obtain robust outcomes. Empirically, we indicate that the period effect is the key to transforming a fertility level into a fertility schedule. Accompanied by the smoothed version of tempo-variance-adjusted total fertility rates proposed in Kohler and Philipov (2001), we approximate the cohort fertility schedules fairly well and the estimates of all distributional parameters can be thereby obtained. Our approach is easy to implement and the data requirement is relatively light, indicating that the proposed method is readily applicable to countries whose data lengths are insufficiently long, and would be helpful for further empirical investigation of the relationship between cohort fertility behavior and other cohort-specific socioeconomic factors.APC model, cohort fertility schedule, fertility forecast

    The Exact Wavefunction Factorization of a Vibronic Coupling System

    Full text link
    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally the nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Carbon dioxide and fruit odor transduction in Drosophila olfactory neurons. What controls their dynamic properties?

    Get PDF
    We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor
    corecore