74 research outputs found

    Experimental demonstration of sub-wavelength image channeling using capacitively loaded wire medium

    Full text link
    In this letter we experimentally demonstrate a possibility to achieve significant sub-wavelength resolution of a near-field image channeled through a layer of an electromagnetic crystal. An image having radius of λ/10\lambda/10 has been realized using an electrically dense lattice of capacitively loaded wires. The loading allows to reduce the lattice period dramatically so that it is only a small fraction of the free-space wavelength. It is shown that losses in the structure only decrease the total amplitude of the image, but do not influence the resolution.Comment: 4 pages, 7 figures, submitted to PR

    Radiation pattern of a classical dipole in a photonic crystal: photon focusing

    Full text link
    The asymptotic analysis of the radiation pattern of a classical dipole in a photonic crystal possessing an incomplete photonic bandgap is presented. The far-field radiation pattern demonstrates a strong modification with respect to the dipole radiation pattern in vacuum. Radiated power is suppressed in the direction of the spatial stopband and strongly enhanced in the direction of the group velocity, which is stationary with respect to a small variation of the wave vector. An effect of radiated power enhancement is explained in terms of \emph{photon focusing}. Numerical example is given for a square-lattice two-dimensional photonic crystal. Predictions of asymptotic analysis are substantiated with finite-difference time-domain calculations, revealing a reasonable agreement.Comment: Submitted to Phys. Rev.

    Sub-wavelength imaging at optical frequencies using canalization regime

    Full text link
    Imaging with sub-wavelength resolution using a lens formed by periodic metal-dielectric layered structure is demonstrated. The lens operates in canalization regime as a transmission device and it does not involve negative refraction and amplification of evanescent modes. The thickness of the lens have to be an integer number of half-wavelengths and can be made as large as required for ceratin applications, in contrast to the other sub-wavelength lenses formed by metallic slabs which have to be much smaller than the wavelength. Resolution of λ/20\lambda/20 at 600 nm wavelength is confirmed by numerical simulation for a 300 nm thick structure formed by a periodic stack of 10 nm layers of glass with ϵ=2\epsilon=2 and 5 nm layers of metal-dielectric composite with ϵ=1\epsilon=-1. Resolution of λ/60\lambda/60 is predicted for a structure with same thickness, period and operating frequency, but formed by 7.76 nm layers of silicon with ϵ=15\epsilon=15 and 7.24 nm layers of silver with ϵ=14\epsilon=-14.Comment: 4 pages, 4 figures, submitted to PR

    Spatial distribution of Cherenkov radiation in periodic dielectric media

    Full text link
    The nontrivial dispersion relation of a periodic medium affects both the spectral and the spatial distribution of Cherenkov radiation. We present a theory of the spatial distribution of Cherenkov radiation in the far-field zone inside arbitrary three- and two-dimensional dielectric media. Simple analytical expressions for the far-field are obtained in terms of the Bloch mode expansion. Numerical examples of the Cherenkov radiation in a two-dimensional photonic crystal is presented. The developed analytical theory demonstrates good agreement with numerically rigorous finite-difference time-domain calculations.Comment: 14 pages, 5 figures, Journal of Optics A (in press

    On homogenization of electromagnetic crystals formed by uniaxial resonant scatterers

    Full text link
    Dispersion properties of electromagnetic crystals formed by small uniaxial resonant scatterers (magnetic or electric) are studied using the local field approach. The goal of the study is to determine the conditions under which the homogenization of such crystals can be made. Therefore the consideration is limited by the frequency region where the wavelength in the host medium is larger than the lattice periods. It is demonstrated that together with known restriction for the homogenization related with the large values of the material parameters there is an additional restriction related with their small absolute values. From the other hand, the homogenization becomes allowed in both cases of large and small material parameters for special directions of propagation. Two unusual effects inherent to the crystals under consideration are revealed: flat isofrequency contour which allows subwavelength imaging using canalization regime and birefringence of extraordinary modes which can be used for beam splitting.Comment: 16 pages, 12 figures, submitted to PR

    Calculation of atomic spontaneous emission rate in 1D finite photonic crystal with defects

    Full text link
    We derive the expression for spontaneous emission rate in finite one-dimensional photonic crystal with arbitrary defects using the effective resonator model to describe electromagnetic field distributions in the structure. We obtain explicit formulas for contributions of different types of modes, i.e. radiation, substrate and guided modes. Formal calculations are illustrated with a few numerical examples, which demonstrate that the application of effective resonator model simplifies interpretation of results.Comment: Cent. Eur. J. Phys, in pres

    Hybrid photonic-bandgap accelerating cavities

    Full text link
    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added; minor changes in the tex

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    Layer-resolved resonance intensity of evanescent polariton modes in anisotropic multilayers

    Get PDF
    Phonon polariton modes in layered anisotropic heterostructures are a key building block for modern nanophotonic technologies. The light-matter interaction for evanescent excitation of such a multilayer system can be theoretically described by a transfer-matrix formalism. This method allows us to compute the imaginary part of the p-polarized reflection coefficient Im(rpp), whose resonant features are commonly used to evaluate the polariton dispersion of the multilayer structure. This reflection coefficient, however, does not reveal how the different layers contribute to these resonances. We present an approach to compute layer-resolved polariton resonance intensity in arbitrarily anisotropic layered heterostructures, based on calculating the Poynting vector extracted from the transfer-matrix formalism under evanescent light excitation. Our approach is independent of the experimental excitation conditions, and it fulfills a strictly proved conservation law for the energy flux. As a testing ground, we study two state-of-the-art nanophotonic multilayer systems, covering strong coupling and tunable hyperbolic surface phonon polaritons in twisted MoO3 double layers. Providing a new level of insight into the polaritonic response, our method holds great potential for understanding, optimizing, and predicting new forms of polariton heterostructures in the future

    Nondifractive Propagation of Light in Photonic Crystals

    Full text link
    We show that diffraction of electromagnetic radiation (in particular of a visible light) can disappear in propagation through materials with periodically in space modulated refraction index, i.e. photonic crystals. In this way the light beams of arbitrary width can propagate without diffractive broadening and, equivalently, arbitrary light patterns can propagate without diffractive smearing
    corecore