267 research outputs found
Selective lasing in multimode periodic and non-periodic nanopillar waveguides
We investigate the lasing action in coupled multi-row nanopillar waveguides
of periodic or fractal structure using the finite difference time domain (FDTD)
method, coupled to the laser rate equations. Such devices exhibit band
splitting with distinct and controllable supermode formation. We demonstrate
that selective lasing into each of the supermodes is possible. The structure
acts as a microlaser with selectable wavelength. Lasing mode selection is
achieved by means of coaxial injection seeding with a Gaussian signal of
appropriate transverse amplitude and phase profiles. Based on this we propose
the concept of switchable lasing as an alternative to conventional laser tuning
by means of external cavity control.Comment: 7 pages, 6 figure
Optical conductivity of metals from first principles
A computational method to obtain optical conductivities from first principles
is presented. It exploits a relation between the conductivity and the complex
dielectric function, which is constructed from the full electronic band
structure within the random-phase approximation. In contrast to the Drude
model, no empirical parameters are used. As interband transitions as well as
local-field effects are properly included, the calculated spectra are valid
over a wide frequency range. As an illustration I present quantitative results
for selected simple metals, noble metals, and ferromagnetic transition metals.
The implementation is based on the full-potential linearized
augmented-plane-wave method.Comment: 3 pages including 5 figure
Experimental demonstration of sub-wavelength image channeling using capacitively loaded wire medium
In this letter we experimentally demonstrate a possibility to achieve
significant sub-wavelength resolution of a near-field image channeled through a
layer of an electromagnetic crystal. An image having radius of has
been realized using an electrically dense lattice of capacitively loaded wires.
The loading allows to reduce the lattice period dramatically so that it is only
a small fraction of the free-space wavelength. It is shown that losses in the
structure only decrease the total amplitude of the image, but do not influence
the resolution.Comment: 4 pages, 7 figures, submitted to PR
Efficient construction of maximally localized photonic Wannier functions: locality criterion and initial conditions
Wannier function expansions are well suited for the description of photonic-
crystal-based defect structures, but constructing maximally localized Wannier
functions by optimizing the phase degree of freedom of the Bloch modes is
crucial for the efficiency of the approach. We systematically analyze different
locality criteria for maximally localized Wannier functions in two- dimensional
square and triangular lattice photonic crystals, employing (local)
conjugate-gradient as well as (global) genetic-algorithm-based, stochastic
methods. Besides the commonly used second moment (SM) locality measure, we
introduce a new locality measure, namely the integrated modulus (IM) of the
Wannier function. We show numerically that, in contrast to the SM criterion,
the IM criterion leads to an optimization problem with a single extremum, thus
allowing for fast and efficient construction of maximally localized Wannier
functions using local optimization techniques. We also present an analytical
formula for the initial choice of Bloch phases, which under certain conditions
represents the global maximum of the IM criterion and, thus, further increases
the optimization efficiency in the general case
Observation of total omnidirectional reflection from a one-dimensional dielectric lattice
We show that under certain conditions one-dimensional dielectric lattice
possesses total omnidirectional reflection of incident light. The predictions
are verified experimentally using Na3AlF6/ZnSe multilayer structure developed
by means of standard optical technology. The structure was found to exhibit
reflection coefficient more then 99% in the range of incident angles 0-86
(degree) at the wavelength of 632.8 nm for s-polarization. The results are
believed to stimulate new experiments on photonic crystals and controlled
spontaneous emission.Comment: 4 pages, 5 figures; submitted to Applied Physics
All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control
A remarkable property of one-dimensional all-dielectric periodic structures
has recently been reported, namely a one-dimensional lattice can totally
reflect electromagnetic wave of any polarization at all angles within a
prescribed frequency region. Unlike their metallic counterpart, such
all-dielectric omnidirectional mirrors are nearly free of loss at optical
frequencies. Here we discuss the physics, design criteria and applications of
the thin-film all-dielectric omnidirectional mirror. The experimental
demonstration of the mirror is presented at optical frequencies.Comment: 6 pages, 9 figures; submitted to IEEE Journal of Lightwave Technolog
Radiation pattern of a classical dipole in a photonic crystal: photon focusing
The asymptotic analysis of the radiation pattern of a classical dipole in a
photonic crystal possessing an incomplete photonic bandgap is presented. The
far-field radiation pattern demonstrates a strong modification with respect to
the dipole radiation pattern in vacuum. Radiated power is suppressed in the
direction of the spatial stopband and strongly enhanced in the direction of the
group velocity, which is stationary with respect to a small variation of the
wave vector. An effect of radiated power enhancement is explained in terms of
\emph{photon focusing}. Numerical example is given for a square-lattice
two-dimensional photonic crystal. Predictions of asymptotic analysis are
substantiated with finite-difference time-domain calculations, revealing a
reasonable agreement.Comment: Submitted to Phys. Rev.
Sub-wavelength imaging at optical frequencies using canalization regime
Imaging with sub-wavelength resolution using a lens formed by periodic
metal-dielectric layered structure is demonstrated. The lens operates in
canalization regime as a transmission device and it does not involve negative
refraction and amplification of evanescent modes. The thickness of the lens
have to be an integer number of half-wavelengths and can be made as large as
required for ceratin applications, in contrast to the other sub-wavelength
lenses formed by metallic slabs which have to be much smaller than the
wavelength. Resolution of at 600 nm wavelength is confirmed by
numerical simulation for a 300 nm thick structure formed by a periodic stack of
10 nm layers of glass with and 5 nm layers of metal-dielectric
composite with . Resolution of is predicted for a
structure with same thickness, period and operating frequency, but formed by
7.76 nm layers of silicon with and 7.24 nm layers of silver with
.Comment: 4 pages, 4 figures, submitted to PR
- …