34 research outputs found

    Model-based patient matching for in-parallel pressure-controlled ventilation

    Get PDF
    Background: Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV. Methods: The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation. Results: The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care. Conclusion: This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials

    Effects of Neurally Adjusted Ventilatory Assist (NAVA) levels in non-invasive ventilated patients: titrating NAVA levels with electric diaphragmatic activity and tidal volume matching

    Get PDF
    BACKGROUND: Neurally adjusted ventilatory assist (NAVA) delivers pressure in proportion to diaphragm electrical activity (Eadi). However, each patient responds differently to NAVA levels. This study aims to examine the matching between tidal volume (Vt) and patients' inspiratory demand (Eadi), and to investigate patient-specific response to various NAVA levels in non-invasively ventilated patients. METHODS: 12 patients were ventilated non-invasively with NAVA using three different NAVA levels. NAVA100 was set according to the manufacturer's recommendation to have similar peak airway pressure as during pressure support. NAVA level was then adjusted ±50% (NAVA50, NAVA150). Airway pressure, flow and Eadi were recorded for 15 minutes at each NAVA level. The matching of Vt and integral of Eadi (ʃEadi) were assessed at the different NAVA levels. A metric, Range90, was defined as the 5-95% range of Vt/ʃEadi ratio to assess matching for each NAVA level. Smaller Range90 values indicated better matching of supply to demand. RESULTS: Patients ventilated at NAVA50 had the lowest Range90 with median 25.6 uVs/ml [Interquartile range (IQR): 15.4-70.4], suggesting that, globally, NAVA50 provided better matching between ʃEadi and Vt than NAVA100 and NAVA150. However, on a per-patient basis, 4 patients had the lowest Range90 values in NAVA100, 1 patient at NAVA150 and 7 patients at NAVA50. Robust coefficient of variation for ʃEadi and Vt were not different between NAVA levels. CONCLUSIONS: The patient-specific matching between ʃEadi and Vt was variable, indicating that to obtain the best possible matching, NAVA level setting should be patient specific. The Range90 concept presented to evaluate Vt/ʃEadi is a physiologic metric that could help in individual titration of NAVA level.Peer reviewe

    Expiratory model-based method to monitor ARDS disease state

    Get PDF
    INTRODUCTION: Model-based methods can be used to characterise patient-specific condition and response to mechanical ventilation (MV) during treatment for acute respiratory distress syndrome (ARDS). Conventional metrics of respiratory mechanics are based on inspiration only, neglecting data from the expiration cycle. However, it is hypothesised that expiratory data can be used to determine an alternative metric, offering another means to track patient condition and guide positive end expiratory pressure (PEEP) selection. METHODS: Three fully sedated, oleic acid induced ARDS piglets underwent three experimental phases. Phase 1 was a healthy state recruitment manoeuvre. Phase 2 was a progression from a healthy state to an oleic acid induced ARDS state. Phase 3 was an ARDS state recruitment manoeuvre. The expiratory time-constant model parameter was determined for every breathing cycle for each subject. Trends were compared to estimates of lung elastance determined by means of an end-inspiratory pause method and an integral-based method. All experimental procedures, protocols and the use of data in this study were reviewed and approved by the Ethics Committee of the University of Liege Medical Faculty. RESULTS: The overall median absolute percentage fitting error for the expiratory time-constant model across all three phases was less than 10 %; for each subject, indicating the capability of the model to capture the mechanics of breathing during expiration. Provided the respiratory resistance was constant, the model was able to adequately identify trends and fundamental changes in respiratory mechanics. CONCLUSION: Overall, this is a proof of concept study that shows the potential of continuous monitoring of respiratory mechanics in clinical practice. Respiratory system mechanics vary with disease state development and in response to MV settings. Therefore, titrating PEEP to minimal elastance theoretically results in optimal PEEP selection. Trends matched clinical expectation demonstrating robustness and potential for guiding MV therapy. However, further research is required to confirm the use of such real-time methods in actual ARDS patients, both sedated and spontaneously breathing.Peer reviewe

    Safe doubling of ventilator capacity: A last resort proposal for last resorts

    Get PDF

    Stochastic integrated model-based protocol for volume-controlled ventilation setting

    Get PDF
    Background and objective: Mechanical ventilation (MV) is the primary form of care for respiratory failure patients. MV settings are based on general clinical guidelines, intuition, and experience. This approach is not patient-specific and patients may thus experience suboptimal, potentially harmful MV care. This study presents the Stochastic integrated VENT (SiVENT) protocol which combines model-based approaches of the VENT protocol from previous works, with stochastic modelling to take the variation of patient respiratory elastance over time into consideration. Methods: A stochastic model of Ers is integrated into the VENT protocol from previous works to develop the SiVENT protocol, to account for both intra- and inter-patient variability. A cohort of 20 virtual MV patients based on retrospective patient data are used to validate the performance of this method for volume-controlled (VC) ventilation. A performance evaluation was conducted where the SiVENT and VENT protocols were implemented in 1080 instances each to compare the two protocols and evaluate the difference in reduction of possible MV settings achieved by each. Results: From an initial number of 189,000 possible MV setting combinations, the VENT protocol reduced this number to a median of 10,612, achieving a reduction of 94.4% across the cohort. With the integration of the stochastic model component, the SiVENT protocol reduced this number from 189,000 to a median of 9329, achieving a reduction of 95.1% across the cohort. The SiVENT protocol reduces the number of possible combinations provided to the user by more than 1000 combinations as compared to the VENT protocol. Conclusions: Adding a stochastic model component into a model-based approach to selecting MV settings improves the ability of a decision support system to recommend patient-specific MV settings. It specifically considers inter- and intra-patient variability in respiratory elastance and eliminates potentially harmful settings based on clinically recommended pressure thresholds. Clinical input and local protocols can further reduce the number of safe setting combinations. The results for the SiVENT protocol justify further investigation of its prediction accuracy and clinical validation trials

    Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model

    Get PDF
    Background: Patient-specific lung mechanics during mechanical ventilation (MV) can be identified from measured waveforms of fully ventilated, sedated patients. However, asynchrony due to spontaneous breathing (SB) effort can be common, altering these waveforms and reducing the accuracy of identified, model-based, and patient-specific lung mechanics. Methods: Changes in patient-specific lung elastance over a pressure–volume (PV) loop, identified using hysteresis loop analysis (HLA), are used to detect the occurrence of asynchrony and identify its type and pattern. The identified HLA parameters are then combined with a nonlinear mechanics hysteresis loop model (HLM) to extract and reconstruct ventilated waveforms unaffected by asynchronous breaths. Asynchrony magnitude can then be quantified using an energy-dissipation metric, Easyn, comparing PV loop area between model-reconstructed and original, altered asynchronous breathing cycles. Performance is evaluated using both test-lung experimental data with a known ground truth and clinical data from four patients with varying levels of asynchrony. Results: Root mean square errors for reconstructed PV loops are within 5% for test-lung experimental data, and 10% for over 90% of clinical data. Easyn clearly matches known asynchrony magnitude for experimental data with RMS errors 50% for Patient 1 and 13% for Patient 2. Patient 3 only presents 20% breaths with Easyn > 10%. Patient 4 has Easyn = 0 for 96% breaths showing accuracy in a case without asynchrony. Conclusions: Experimental test-lung validation demonstrates the method’s reconstruction accuracy and generality in controlled scenarios. Clinical validation matches direct observations of asynchrony in incidence and quantifies magnitude, including cases without asynchrony, validating its robustness and potential efficacy as a clinical real-time asynchrony monitoring tool

    Next-generation, personalised, model-based critical care medicine : a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them

    Get PDF
    © 2018 The Author(s). Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care
    corecore