2 research outputs found

    Complexation of Bioreducible Cationic Polymers with Gold Nanoparticles for Improving Stability in Serum and Application on Nonviral Gene Delivery

    No full text
    Widespread applications of conventional polymeric gene carriers are greatly hampered by their inefficient transfection performance under serum-containing environment. Aiming to overcome this limitation, we propose a bioreducible polyethylenimine-gold nanocomplex system (SSPEI-Au NC), which can be prepared by a simple layer-by-layer (LBL) assembly procedure. SSPEI-Au NC contains sequentially deposited layers of bioreducible polyethylenimine (SSPEI) and poly­(γ-glutamic acid) (γ-PGA) for efficient binding and delivery of plasmid DNA (pDNA). SSPEI-Au NC was characterized for various physicochemical properties, including: UV–vis spectra, TEM imaging, hydrodynamic size, and pDNA binding ability. The SSPEI-Au NC were efficiently uptaken by mammalian cells as observed using dark-field microscopy. Comparing to nondegradable PEI25k, the bioreducible SSPEI-Au NC exhibited superior transfection capability under serum-containing condition while causing lower cytotoxicity on mammalian cell lines. The effect of serum on SSPEI-Au NC dispersity was studied using UV–vis spectrometry and the results suggest that serum-assisted colloidal stability of SSPEI-Au NC contributed to its serum-resistant transfection

    Near-IR-Absorbing Gold Nanoframes with Enhanced Physiological Stability and Improved Biocompatibility for In Vivo Biomedical Applications

    No full text
    This paper describes the synthesis of near-infrared (NIR)-absorbing gold nanoframes (GNFs) and a systematic study comparing their physiological stability and biocompatibility with those of hollow Au–Ag nanoshells (GNSs), which have been used widely as photothermal agents in biomedical applications because of their localized surface plasmon resonance (LSPR) in the NIR region. The GNFs were synthesized in three steps: galvanic replacement, Au deposition, and Ag dealloying, using silver nanospheres (SNP) as the starting material. The morphology and optical properties of the GNFs were dependent on the thickness of the Au coating layer and the degree of Ag dealloying. The optimal GNF exhibited a robust spherical skeleton composed of a few thick rims, but preserved the distinctive LSPR absorbance in the NIR regioneven when the Ag content within the skeleton was only 10 wt %, 4-fold lower than that of the GNSs. These GNFs displayed an attractive photothermal conversion ability and great photothermal stability, and could efficiently kill 4T1 cancer cells through light-induced heating. Moreover, the GNFs preserved their morphology and optical properties after incubation in biological media (e.g., saline, serum), whereas the GNSs were unstable under the same conditions because of rapid dissolution of the considerable silver content with the shell. Furthermore, the GNFs had good biocompatibility with normal cells (e.g., NIH-3T3 and hepatocytes; cell viability for both cells: >90%), whereas the GNSs exhibited significant dose-dependent cytotoxicity (e.g., cell viability for hepatocytes at 1.14 nM: ca. 11%), accompanied by the induction of reactive oxygen species. Finally, the GNFs displayed good biocompatibility and biosafety in an in vivo mouse model; in contrast, the accumulation of GNSs caused liver injury and inflammation. Our results suggest that GNFs have great potential to serve as stable, biocompatible NIR-light absorbers for in vivo applications, including cancer detection and combination therapy
    corecore