10 research outputs found

    An architecture for real-time vision processing

    Get PDF
    To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture

    Video Mosaicking for Inspection of Gas Pipelines

    Get PDF
    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable differences: Because the wide-angle lens introduces considerable distortion, the image data must be processed to effectively unwarp the images (see Figure 2). The computer executes special software that includes an unwarping algorithm that takes explicit account of the cylindrical pipe geometry. To reduce the processing time needed for unwarping, parameters of the geometric mapping between the circular view of a fisheye lens and pipe wall are determined in advance from calibration images and compiled into an electronic lookup table. The software incorporates the assumption that the optical axis of the camera is parallel (rather than perpendicular) to the direction of motion of the camera. The software also compensates for the decrease in illumination with distance from the ring of LEDs

    Machine Vision for Relative Spacecraft Navigation During Approach to Docking

    Get PDF
    This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image

    Object recognition and pose estimation of planar objects from range data

    Get PDF
    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise

    A Structured Light Sensor System for Tree Inventory

    No full text
    Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters

    Change in chemical composition and enhancement of intestinal microflora of acid hydrolyzed polysaccharides from Zizyphus jujube and Sterculia lychnophora

    No full text
    The homology between food and medicine has been a successful and well-accepted concept in traditional medicine, where people believe that beneficial naturally available substances can be replenished via diet to promote health. In this study, the polysaccharides in jujube fruit (Ziziphus jujuba Mill.) and dried boat-fruited Sterculia seeds (Sterculia lychnophora) were extracted using different methods (water, acid, and alkaline extraction), and their physicochemical properties and compositions were investigated. Additionally, the effects of polysaccharides on the growth of known intestinal bacteria were investigated using in vitro incubation. The results showed that the acid and alkaline extraction methods resulted in the highest yields of polysaccharides with a high uronic acid content and satisfactory antioxidant activity. The water-extracted polysaccharides exhibited a suitable viscosity. Moreover, the water-extracted polysaccharides were acid-hydrolyzed for 2–6 h, followed by gel permeation chromatography (GPC) to obtain acidic hydrolyzed polysaccharides with a wide range of molecular weights and high carbohydrate contents. Subsequently, five known strains of intestinal bacteria cultured with the acidic hydrolyzed polysaccharides from jujube fruits and pandahai (10 mg/mL) were found to proliferate in Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus delbrueckii, and Propionibacterium freudenreichir in 0–48 h cultures. However, further evidence is required to validate these results, either in gastrointestinal simulations or animal models

    Chemical Constituents of <i>Vigna luteola</i> and Their Anti-inflammatory Bioactivity

    No full text
    Seventy-three compounds were identified from the methanol extract of V. luteola, and among these, three new (1&#8211;3) were characterized by spectroscopic and mass spectrometric analyses. The isolated constituents were assessed for anti-inflammatory potential evaluation, and several purified principles exhibited significant superoxide anion and elastase inhibitory effects

    Modeling of Metabolic Equivalents (METs) during Moderate Resistance Training Exercises

    No full text
    Energy expenditure through metabolic equivalent (MET) prediction during resistance exercises in humans can be modeled by using cardiorespiratory parameters. In this study, we aimed to predict MET during six moderate-intensity resistance training sessions consisting of three different exercises. Eleven participants were recruited into two groups; an untrained (n = 5; with no resistance training experience) and a trained group (n = 6; with 2 months resistance training experience). Each participant completed six training sessions separated with a rest interval of 1–2 days. While wearing a mask for indirect calorimetric measurements using Cortex Metalyzer 3B, each participant performed training sessions consisting of three types of dumbbell exercises: shoulder press, deadlift, and squat. The metabolic equivalents (METs), respiratory exchange ratio (RER), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), blood lactate (BL), and Borg rate of perceived exertion (RPE) were measured. The MET was predicted using generalized estimating equations (GEE) for repeated measure data collected during exercise and rest periods. It was observed that during exercise period, RER, HR, SBP, and BL for the training group (QIC = 187, 95% CI = −0.012~0.915, p = 0.000*~0.033*) while RER, HR, SBP, DBP, and RPE (QIC = 48, 95% CI = −0.024~0.422, p = 0.000*~0.002*) during resting period for untrained group significantly predicted MET for moderate-intensity interval resistance training. It is concluded that the cardiorespiratory variables are significantly related to MET. During exercise, RER and HR significantly predicted MET for both groups along with additional parameters of SBP and BL for the training group. While during the resting period, RER, HR, SBP, DBP, and RPE related significantly for untrained and BL for training group respectively

    Management consensus guideline for hepatocellular carcinoma: 2016 updated by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan

    No full text
    Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality in Taiwan. To help clinical physicians to manage patients with HCC, the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan produced the management consensus guideline for HCC. Methods: The recommendations focus on nine important issues on management of HCC, including surveillance, diagnosis, staging, surgery, local ablation, transarterial chemoembolization/transarterial radioembolization/hepatic arterial infusion chemotherapy, systemic therapy, radiotherapy, and prevention. Results: The consensus statements were discussed, debated and got consensus in each expert team. And then the statements were sent to all of the experts for further discussion and refinement. Finally, all of the experts were invited to vote for the statements, including the level of evidence and recommendation. Conclusion: With the development of the management consensus guideline, HCC patients could benefit from the optimal therapeutic modality. Keywords: Diagnosis, Hepatocellular carcinoma, Staging, Surveillance, Treatmen
    corecore